题目内容
计算
[
+
+
+…+
]=
.
| lim |
| n→∞ |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
| 3 |
| 4 |
| 3 |
| 4 |
分析:先利用裂项求和可得,
+
+…+
=
-
,代入可求极限
[
+
+…+
]=
[
-
]
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
| lim |
| n→∞ |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| lim |
| n→∞ |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
解答:解:∵2[
+
+…+
]
=1-
+
-
+…+
-
=1+
-
-
=
-
∴
+
+…+
=
-
∴
[
+
+…+
]=
[
-
]=
故答案为:
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
=1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
∴
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
∴
| lim |
| n→∞ |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| lim |
| n→∞ |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
点评:本题主要考查了数列极限的求解,解题的关键是利用裂项求和,但本题裂项是考生容易出现错误的地方,由于
=
(
-
)中的
容易漏掉,注意此类裂项的规律
=
×(
-
)
| 1 |
| (n+2)n |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| 2 |
| 1 |
| n(n+k) |
| 1 |
| k |
| 1 |
| n |
| 1 |
| n+k |
练习册系列答案
相关题目
计算
[1+
+(
)2+(
)3+…+(
)n-1]的结果是( )
| lim |
| n→∞ |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
A、
| ||
| B、3 | ||
C、
| ||
| D、2 |