题目内容

16.已知函数f(x)=x3-ax2+b,曲线y=f(x)在点(2,4)处的切线方程为4x-y-4=0.
(Ⅰ)求a,b 的值;
(Ⅱ)求函数f(x)在[-1,3]上的最大值.

分析 (Ⅰ)求出函数的导数,通过计算f(2),f′(2)的值,得到关于a,b的方程组,求出a,b的值即可;
(Ⅱ)求出函数的导数,解费用导函数的方程,求出函数的单调区间,从而求出f(x)在[-1,3]的最大值即可.

解答 解:(I)f′(x)=3x2-2ax.…(2分)
由已知有$\left\{\begin{array}{l}{f(2)=4}\\{f′(2)=4}\end{array}\right.$即$\left\{\begin{array}{l}{8-4a+b=4}\\{12-4a=4}\end{array}\right.$…(4分)
解得:$\left\{\begin{array}{l}{a=2}\\{b=4}\end{array}\right.$…(5分)
(II)由(Ⅰ)得:f(x)=x3-2x2+4,f′(x)=3x2-4x.
令f′(x)=0,解得:x=0或x=$\frac{4}{3}$…(8分)

x-1(-1,0)0(0,$\frac{4}{3}$)$\frac{4}{3}$($\frac{4}{3}$,3)3
f′(x)+0-0+
f(x)1增函数极大值4减函数极小值$\frac{76}{27}$增函数13
….(10分)
由表可知,当x∈[-1,3]时,f(x)最大值为f(3)=13.…(12分)

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网