ÌâÄ¿ÄÚÈÝ
15£®ÎªÁËÁ˽âÀºÇò°®ºÃÕßСÀîͶÀºÃüÖÐÂÊÓë´òÀºÇòʱ¼äÖ®¼äµÄ¹ØÏµ£¬¼Ç¼ÁËСÀîµÚiÌì´òÀºÇòµÄʱ¼äxi£¨µ¥Î»£ºÐ¡Ê±£©Óëµ±ÌìͶÀºÃüÖÐÂÊyiµÄÊý¾Ý£¬ÆäÖÐi=1£¬2£¬3£¬4£¬5£®ËãµÃ£º$\sum_{i=1}^{5}$xi=15£¬$\sum_{i=1}^{5}$yi=2.5£¬$\sum_{i=1}^{5}$xiyi=7.6£¬$\sum_{i=1}^{5}$x${\;}_{i}^{2}$=5.5£¬£®£¨¢ñ£©ÇóͶÀºÃüÖÐÂÊy¶Ô´òÀºÇòʱ¼äxµÄÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$£»
£¨¢ò£©ÈôСÀîÃ÷Ìì×¼±¸´òÇò2.5Сʱ£¬Ô¤²âËûµÄͶÀºÃüÖÐÂÊ£®
¸½£ºÏßÐԻع鷽³Ì$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$ÖÐ$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$£¬$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$£¬ÆäÖÐ$\overline{x}$£¬$\overline{y}$ΪÑù±¾Æ½¾ùÊý£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâ¼ÆËã$\overline{x}$¡¢$\overline{y}$£¬Çó³ö»Ø¹éϵÊý$\widehat{b}$¡¢$\widehat{a}$£¬Ð´³ö»Ø¹é·½³Ì£»
£¨¢ò£©½«x=2.5´úÈë»Ø¹é·½³Ì£¬¼ÆËã¶ÔÓ¦µÄ$\widehat{y}$Öµ¼´¿É£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâÖª£ºn=5£¬
$\overline{x}$=$\frac{1}{5}$¡Á$\underset{\stackrel{5}{¡Æ}}{i=1}$xi=$\frac{1}{5}$¡Á15=3£¬
$\overline{y}$=$\frac{1}{5}$¡Á$\underset{\stackrel{5}{¡Æ}}{i=1}$yi=$\frac{1}{5}$¡Á2.5=0.5£¬
ÓÚÊÇ$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n\stackrel{-2}{x}}$=$\frac{7.6-5¡Á3¡Á0.5}{55-5{¡Á3}^{2}}$=0.01£¬
$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$=0.5-0.01¡Á3=0.47£¬
¹ÊËùÇ󻨹鷽³ÌΪ$\widehat{y}$=0.01x+0.47£»
£¨¢ò£©½«x=2.5´úÈë»Ø¹é·½³Ì$\widehat{y}$=0.01x+0.47£¬
¿ÉÒÔÔ¤²âËûµÄͶÀºÃüÖÐÂÊΪ
$\widehat{y}$=0.01¡Á2.5+0.47=0.495£®
µãÆÀ ±¾Ì⿼²éÁ˻عéÖ±Ïß·½³ÌµÄÇó·¨ÓëÓ¦ÓÃÎÊÌ⣬ÊÇ»ù´¡ÌâÄ¿£®
| A£® | $\frac{3V}{S}$ | B£® | $\frac{2V}{S}$ | C£® | $\frac{V}{2S}$ | D£® | $\frac{V}{3S}$ |
| A£® | $\frac{\sqrt{2}}{2}$ | B£® | 1 | C£® | $\sqrt{2}$ | D£® | 2 |
| A£® | -260¡ã | B£® | 470¡ã | C£® | 840¡ã | D£® | -600¡ã |
| A£® | 30¡ã | B£® | 30¡ã»ò150¡ã | C£® | 60¡ã | D£® | 60¡ã»ò120¡ã |