题目内容
如图,已知平面,,,,、分别是、的中点则异面直线与所成角的正切值为 .
已知直线和.
(1)若, 求实数的值;
(2)若, 求实数的值.
设极坐标系的极点与直角坐标系的原点重合,极轴与x轴的正半轴重合.已知椭圆C的参数方程为(θ为参数),点M的极坐标为(1,).若P是椭圆C上任意一点,试求PM的最大值,并求出此时点P的直角坐标.
已知α,β是两个不同的平面,l,m是两条不同直线,l⊥α,m?β.给出下列命题:
①α∥β⇒l⊥m; ②α⊥β⇒l; ③m∥α⇒l⊥β; ④l⊥β⇒m∥α.
其中正确的命题是 . (填写所有正确命题的序号).
已知椭圆C:的焦点是、,且椭圆经过点。
(1)求椭圆C的方程;
(2)设直线与椭圆交于两点,且以为直径的圆过椭圆右顶点,求证:直线l恒过定点.
已知抛物线的焦点F恰好是双曲线的右焦点,且两条曲线的交点的连线过点F,则该双曲线的离心率为( )
A. B.2 C.+1 D.-1
过抛物线的焦点的直线交抛物线于两点.若中点到抛物线准线的距离为6,则线段的长为( )
A. B. C. D.无法确定
若实数满足,则的取值范围为 ( )
A. B.
C. D.
数列中,,,则数列的通项公式 .