题目内容
已知tan(α-β)=
,α、β≠kπ+
,k?Z,求证:2tanα=3tanβ.
| sin2β |
| 5-cos2β |
| π |
| 2 |
分析:把已知等式的左边利用两角和与差的正切函数公式化简,右边分子利用二倍角的正弦函数公式化简,分母先利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,分子分母同时除以cos2β,利用同角三角函数间的基本关系弦化切后,进行适当的变形,与左边化简后的式子比较,即可得证.
解答:证明:∵tan(α-β)=
,
=
=
=
=
=
=
,
且tan(α-β)=
,
∴
=
,
则tanα=
tanβ,即2tanα=3tanβ.
| tanα-tanβ |
| 1+tanαtanβ |
| sin2β |
| 5-cos2β |
| 2sinβcosβ |
| 5-(1-2sin2β) |
| 2sinβcosβ |
| 4+2sin2β |
| sinβcosβ |
| 2+sin2β |
=
| sinβcosβ |
| 2cos2β+3sin2β |
| tanβ |
| 2+3tan2β |
| ||
1+
|
且tan(α-β)=
| sin2β |
| 5-cos2β |
∴
| tanα-tanβ |
| 1+tanαtanβ |
| ||
1+
|
则tanα=
| 3 |
| 2 |
点评:此题考查了两角和与差的正切函数公式,二倍角的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是进行证明的关键.
练习册系列答案
相关题目
已知tan(θ+
)=-3,则sin2θ+sinθcosθ-2cos2θ=( )
| π |
| 4 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|