题目内容

已知tan(α-β)=
sin2β
5-cos2β
,α、β≠kπ+
π
2
,k?Z,求证:2tanα=3tanβ.
分析:把已知等式的左边利用两角和与差的正切函数公式化简,右边分子利用二倍角的正弦函数公式化简,分母先利用二倍角的余弦函数公式变形,再利用同角三角函数间的基本关系化简,分子分母同时除以cos2β,利用同角三角函数间的基本关系弦化切后,进行适当的变形,与左边化简后的式子比较,即可得证.
解答:证明:∵tan(α-β)=
tanα-tanβ
1+tanαtanβ

sin2β
5-cos2β
=
2sinβcosβ
5-(1-2sin2β)
=
2sinβcosβ
4+2sin2β
=
sinβcosβ
2+sin2β

=
sinβcosβ
2cos2β+3sin2β
=
tanβ
2+3tan2β
=
3
2
tanβ-tanβ
1+
3
2
tan2β

且tan(α-β)=
sin2β
5-cos2β

tanα-tanβ
1+tanαtanβ
=
3
2
tanβ-tanβ
1+
3
2
tan2β

则tanα=
3
2
tanβ,即2tanα=3tanβ.
点评:此题考查了两角和与差的正切函数公式,二倍角的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是进行证明的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网