题目内容
为等差数列的前项和,已知,求( )
A、25 B、30 C、35 D、105
C
【解析】
试题分析:由等差数列的性质,得,即,则.
考点:等差数列.
设是定义在上的偶函数,对任意,都有,且当时,.若函数在区间恰有3个不同的零点,则的取值范围是 .
已知x>0,y>0,且4x+2y-xy=0,则x+y的最小值为 .
(本题满分12分)求函数的值域.
已知方程的两根是,且,则的取值范围是( )
A、(-2,-) B、[-2,-) C、(-1,-) D、(-2,-1)
已知函数,(提示:)
(1)当时,求曲线在点处的切线方程;
(2)求的单调区间.
己知抛物线的焦点恰好是双曲线的右焦点,且两条曲线的交点的连线过点,则该双曲线的离心率为 ____________
根据下列条件,求圆的方程.
(1)经过坐标原点和点P(1,1),并且圆心在直线2x+3y+1=0上.
(2)过P(4,-2)、Q(-1,3)两点,且在y轴上截得的线段长为4.
中心在原点,焦点在x轴上,若长轴长为18,且两个焦点恰好将长轴三等分,则此椭圆的方程是( )
A.+=1 B.+=1
C.+=1 D.+=1