题目内容
2.已知数列{an}为等比数列,Sn是它的前n项和,设Tn=S1+S2+…+Sn,若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,则T4=98.分析 根据题意,设数列{an}的首项为a1,公比为q,结合题意可得$\left\{\begin{array}{l}{{a}_{1}q×{a}_{1}{q}^{2}=2{a}_{1}}\\{{a}_{1}{q}^{3}+2{a}_{1}{q}^{6}=2×\frac{5}{4}}\end{array}\right.$,解可得首项与公比的值,进而可得Sn=$\frac{16(1-{\frac{1}{2}}^{n})}{1-\frac{1}{2}}$;又由T4=S1+S2+S3+S4,计算可得答案.
解答 解:根据题意,设数列{an}的首项为a1,公比为q,
若a2•a3=2a1,且a4与2a7的等差中项为$\frac{5}{4}$,
则有$\left\{\begin{array}{l}{{a}_{1}q×{a}_{1}{q}^{2}=2{a}_{1}}\\{{a}_{1}{q}^{3}+2{a}_{1}{q}^{6}=2×\frac{5}{4}}\end{array}\right.$,
解可得a1=16,q=$\frac{1}{2}$;
则T1=S1=a1=16,
则Sn=$\frac{16(1-{\frac{1}{2}}^{n})}{1-\frac{1}{2}}$;
则T4=S1+S2+S3+S4=16+$\frac{16(1-{\frac{1}{2}}^{2})}{1-\frac{1}{2}}$+$\frac{16(1-{\frac{1}{2}}^{3})}{1-\frac{1}{2}}$+$\frac{16(1-{\frac{1}{2}}^{4})}{1-\frac{1}{2}}$=98;
故答案为:98.
点评 本题考查等比数列的前n项和,关键是求出等比数列的首项与公比.
| A. | (-∞,-12] | B. | (-∞,14] | C. | (-∞,-8] | D. | (-∞,$\frac{31}{2}$] |
| A. | 若a∥β,α∥β,则a∥α | B. | 若α∥β,a?α,则a∥β | ||
| C. | 若α∥β,a?α,b?β,则a∥b | D. | 若a∥β,b∥α,α∥β,则a∥b |
| A. | $\frac{x^2}{4}+\frac{y^2}{2}$=1 | B. | $\frac{x^2}{4}+{y^2}$=1 | C. | $\frac{x^2}{4}+\frac{y^2}{3}$=1 | D. | $\frac{y^2}{4}+{x^2}$=1 |
| A. | 对任意x∈(0,+∞),都有lnx<x-2 | B. | 对任意x∈(0,+∞),都有lnx≤x-2 | ||
| C. | 存在x∈(0,+∞),使得lnx<x-2 | D. | 存在x∈(0,+∞),使得lnx≤x-2 |