题目内容
如图,棱形与正三角形的边长均为2,它们所在平面互相垂直,,且.
(1)求证:;
(2)若,求二面角的余弦值.
已知四边形为平行四边形,, 四边形为正方形,且平面平面.
(1)求证:平面;
(2)若为中点,证明:在线段上存在点,使得平面,并求出此时三棱锥的体积.
已知是虚数单位,复数满足,则( )
A. B. C. D.
一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( )
A.1 B.2 C.3 D.4
已知等差数列前9项的和为27,,则( )
A.100 B.99 C.98 D.97
如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=, O为AC与BD的交点,E为棱PB上一点.
(Ⅰ)证明:平面EAC⊥平面PBD;
(Ⅱ)若PD∥平面EAC,求三棱锥P﹣EAD的体积.
如图,正方体AC1的棱长为1,过点A作平面A1BD的垂线,垂足为点H,以下四个命题:
①点H是△A1BD的垂心;
②AH垂直平面CB1D1
③直线AH和BB1所成角为45°;
④AH的延长线经过点C1
其中假命题的个数为( )
A.0 B.1 C.2 D.3
给出以下四个命题:
①若函数的定义域为,则函数的定义域为;
②函数的单调递减区间是;
③已知集合,则映射中满足的映射共有3个;
④若,且,.
其中正确的命题有______.(写出所有正确命题的序号)
已知数列是等差数列, 满足,数列满足,且数列为等比数列.
(1)求数列和的通项公式;
(2)求数列的前项和.