题目内容
(2008•如东县三模)已知向量
=(sinx,
),
=(cosx,-1).
(1)当
⊥
时,求x的值.
(2)(文科)求f(x)=(
+
)•
的最大值与最小值.
| a |
| 1 |
| 2 |
| b |
(1)当
| a |
| b |
(2)(文科)求f(x)=(
| a |
| b |
| b |
分析:(1)利用
⊥
?
•
=0即可得出;
(2)利用向量运算和数量积运算即可得出f(x),再利用正弦函数的单调性即可得出.
| a |
| b |
| a |
| b |
(2)利用向量运算和数量积运算即可得出f(x),再利用正弦函数的单调性即可得出.
解答:解:(1)∵
⊥
,∴
•
=sinxcosx-
=0,∴sin2x=1,∴2x=2kπ+
,解得x=kπ+
(k∈Z).
(2)f(x)=(
+
)•
=(sinx+cosx,-
)•(cosx,-1)
=sinxcosx+cos2x+
=
sin2x+
+
=
sin(2x+
)+1,
∵-1≤sin(2x+
)≤1,
∴-
+1≤
sin(2x+
)+1≤
+1.
∴f(x)的最小值为1-
,最大值为1+
.
| a |
| b |
| a |
| b |
| 1 |
| 2 |
| π |
| 2 |
| π |
| 4 |
(2)f(x)=(
| a |
| b |
| b |
| 1 |
| 2 |
=sinxcosx+cos2x+
| 1 |
| 2 |
=
| 1 |
| 2 |
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
∵-1≤sin(2x+
| π |
| 4 |
∴-
| ||
| 2 |
| ||
| 2 |
| π |
| 4 |
| ||
| 2 |
∴f(x)的最小值为1-
| ||
| 2 |
| ||
| 2 |
点评:熟练掌握
⊥
?
•
=0、向量运算和数量积运算、正弦函数的单调性等是解题的关键.
| a |
| b |
| a |
| b |
练习册系列答案
相关题目