ÌâÄ¿ÄÚÈÝ
7£®Ë®¿âµÄÐîË®Á¿ËæÊ±¼ä¶ø±ä»¯£¬ÏÖÓÃt±íʾʱ¼ä£¬ÒÔÔÂΪµ¥Î»£¬Äê³õΪÆðµã£¬¸ù¾ÝÀúÄêÊý¾Ý£¬Ä³Ë®¿âµÄÐîË®Á¿£¨µ¥Î»£ºÒÚÁ¢·½Ã×£©¹ØÓÚtµÄ½üËÆº¯Êý¹ØÏµÊ½ÎªV£¨t£©=$\left\{\begin{array}{l}{£¨-{t}^{2}+14t-40£©{e}^{\frac{1}{t}}+60£¬0£¼t¡Ü10}\\{4£¨t-10£©£¨3t-4£©+60£¬10£¼t¡Ü12}\end{array}\right.$£¬¸ÃË®¿âµÄÐîË®Á¿Ð¡ÓÚ60µÄʱÆÚ³ÆÎª¿ÝË®ÆÚ£®ÒÔi-1£¼t£¼i±íʾµÚiÔ·ݣ¨i=1£¬2£¬3£¬¡£¬12£©£¬ÔòͬһÄêÄÚÊÇ¿ÝË®ÆÚµÄÔ·ÝÊýÊÇ5£®·ÖÎö ·Ö¶ÎÇó³öË®¿âµÄÐîÇóÁ¿Ð¡ÓÚ60ʱxµÄȡֵ·¶Î§£¬×¢Òâʵ¼ÊÎÊÌâxҪȡÕû£¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£º£¨1£©µ±0£¼t¡Ü10ʱ£¬V£¨t£©=£¨-t2+14t-40£©${e}^{\frac{1}{t}}$+60£¼60£¬
»¯¼òµÃt2-14t+40£¾0£¬
¡àt£¼4»òt£¾10£¬ÓÖ0£¼t¡Ü10£¬¹Ê0£¼t£¼4£®
µ±10£¼t¡Ü12ʱ£¬V£¨t£©=4£¨t-10£©£¨3t-41£©+50£¼50£¬
»¯¼òµÃ£¨t-10£©£¨3t-41£©£¼0
¡à10$£¼t£¼\frac{41}{3}$£¬
¡ß10£¼t¡Ü12£¬
¡à10£¼t¡Ü12
×ÛÉϵã¬0£¼t£¼4»ò10£¼t¡Ü12
¹ÊÖª¿ÝË®ÆÚΪ1Ô¡¢2Ô¡¢3Ô¡¢11Ô¡¢12Ô¹²5¸öÔ£®
¹Ê´ð°¸Îª£º5£®
µãÆÀ ±¾Ð¡ÌâÖ÷Òª¿¼²éº¯Êý£¬²»µÈʽµÈ»ù±¾ÖªÊ¶£¬¿¼²é×ÛºÏÔËÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌâÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®
¸÷Àⳤ¶¼Îª2µÄËÄÀâ×¶£¬µ×ÃæABCDÊÇÕý·½ÐΣ¬½«²àÃæPBCˮƽ·ÅÖã¬ÔòÕâ¸ö¼¸ºÎÌåµÄ¸©ÊÓͼµÄÃæ»ýΪ£¨¡¡¡¡£©
| A£® | $\sqrt{3}$ | B£® | $\frac{\sqrt{3}}{2}$ | C£® | $\frac{4\sqrt{3}}{3}$ | D£® | $\frac{5\sqrt{3}}{3}$ |
12£®Èçͼ£¬ÏÂÁÐËĸö¼¸ºÎÌåÖУ¬ËüÃǸ÷×ÔµÄÈýÊÓͼ£¨Ö÷ÊÓͼ¡¢×óÊÓͼ¡¢¸©ÊÓͼ£©ÓÐÁ½¸öÏàͬ£¬¶øÁíÒ»¸ö²»Í¬µÄ¼¸ºÎÌåÊÇ£¨¡¡¡¡£©

| A£® | ¢Ù¢Ú | B£® | ¢Ú¢Û | C£® | ¢Ú¢Ü | D£® | ¢Û¢Ü |
17£®º¯Êýy=ax+3-2£¨a£¾0£¬a¡Ù1£©µÄͼÏóºã¹ý¶¨µãA£¬ÈôµãAÔÚÖ±Ïß$\frac{x}{m}+\frac{y}{n}$=-1ÉÏ£¬m£¾0£¬n£¾0£¬Ôò3m+nµÄ×îСֵΪ£¨¡¡¡¡£©
| A£® | 13 | B£® | 16 | C£® | 11+6$\sqrt{2}$ | D£® | 28 |