ÌâÄ¿ÄÚÈÝ
5£®¶¨Ò壺ʵÊýa£¬b£¬cÈôÂú×ãa+c=2b£¬Ôò³Æa£¬b£¬cÊǵȲîµÄ£¬ÈôÂú×ã$\frac{1}{a}+\frac{1}{b}=\frac{2}{c}$£¬Ôò³Æa£¬b£¬cÊǵ÷ºÍµÄ£®ÒÑÖª¼¯ºÏM={x||x|¡Ü2017£¬x¡ÊZ}£¬¼¯ºÏPÊǼ¯ºÏMµÄÈýÔª×Ó¼¯£¬¼´P={a£¬b£¬c}⊆M£¬Èô¼¯ºÏPÖеÄÔªËØa£¬b£¬c¼ÈÊǵȲîµÄ£¬ÓÖÊǵ÷ºÍµÄ£¬Ôò³Æ¼¯ºÏPΪ¡°ºÃ¼¯¡±µÄ¸öÊýÊÇ1008£®·ÖÎö $\frac{1}{a}+\frac{1}{b}=\frac{2}{c}$£¬ÇÒa+c=2b£¬£¨a-b£©£¨a+2b£©=0£¬¿ÉµÃa=-2b£¬c=4b£¬P={-2b£¬b£¬4b}£®Áî-2017¡Ü4b¡Ü2017£¬½â³ö¼´¿ÉµÃ³ö£®
½â´ð ½â£º¡ß$\frac{1}{a}+\frac{1}{b}=\frac{2}{c}$£¬ÇÒa+c=2b£¬
¡à£¨a-b£©£¨a+2b£©=0£¬
¡àa=b£¨Éᣩ£¬»òa=-2b£¬¡àc=4b£¬
¡àP={-2b£¬b£¬4b}
Áî-2017¡Ü4b¡Ü2017£¬µÃ-504-$\frac{1}{4}$¡Üb¡Ü504+$\frac{1}{4}$£¬
¡à¡°ºÃ¼¯¡±PµÄ¸öÊýΪ2¡Á504=1008£®
¹Ê´ð°¸£º1008£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁС¢¼¯ºÏµÄÔËËãÐÔÖÊ¡¢²»µÈʽµÄÐÔÖÊÓë½â·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
15£®ÒÑÖªº¯Êýf£¨x£©=a+$\sqrt{x}$lnxÔÚ£¨0£¬+¡Þ£©ÉÏÓÐÇÒ½öÓÐ1¸öÁãµã£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
| A£® | £¨-¡Þ£¬0] | B£® | £¨-¡Þ£¬0]¡È{$\frac{2}{e}$} | C£® | £¨-¡Þ£¬$\frac{2}{e}$£© | D£® | £¨-¡Þ£¬$\frac{2}{e}$£© |
17£®ÒÑÖªµãA£¨2£¬0£©£¬B£¨3£¬2£©£¬ÏòÁ¿$\overrightarrow a=£¨{2£¬¦Ë}£©$£¬Èô$\overrightarrow a¡Í\overrightarrow{AB}$£¬Ôò$|{\overrightarrow a}|$Ϊ£¨¡¡¡¡£©
| A£® | $\sqrt{5}$ | B£® | $\sqrt{3}$ | C£® | $2\sqrt{6}$ | D£® | 4 |