题目内容
命题“不成立”是真命题,则实数的取值范围是 .
已知命题:方程表示焦点在轴上的椭圆;命题:点在圆内.若为真命题,为假命题,试求实数的取值范围.
设,函数.
(Ⅰ)若,求不等式的解集;
(Ⅱ)若在[0,1]上的最大值为,求的范围;
(Ⅲ)当时,对任意的正实数,不等式恒成立,求实数的取值范围.
已知椭圆C的中心在原点,焦点在轴上,焦距为2,离心率为.
(1)求椭圆C的方程;
(2)设直线l经过点M(0,1),且与椭圆C交于A,B两点,若,求直线l的方程.[
已知双曲线的离心率为2,焦点是(-4,0),(4,0),则双曲线方程为 .
为选拔选手参加“中国谜语大会”,某中学举行了一次“谜语大赛”活动.为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为分)作为样本(样本容量为)进行统计.按照的分组作出频率分布直方图,并作出样本分数的茎叶图(图中仅列出了得分在的数据).
(1)求样本容量和频率分布直方图中的、的值;
(2)在选取的样本中,从竞赛成绩在分以上(含分)的学生中随机抽取名学生参加“中国谜语大会”,求所抽取的名学生中至少有一人得分在内的概率.
若,则 .
已知抛物线()的焦点为,过点作直线交抛物线于,两点.椭圆的中心在原点,焦点在轴上,点是它的一个顶点,且其离心率.
(Ⅰ)分别求抛物线和椭圆的方程;
(Ⅱ)经过,两点分别作抛物线的切线,,切线与相交于点.证明:.
设函数,则不等式的解集是 .