题目内容
1.某单位建造一间地面面积为12m2的背面靠墙的矩形小房,由于地理位置的限制,房子侧面的长度x不得超过5米,房屋正面的造价为400元/m2,房屋侧面的造价为l50元/m2,屋顶和地面的造价费用合计为5800元,如果墙高为3m,且不计房屋背面的费用.当侧面的长度为多少时,总造价最底?分析 通过题意得出关系式y=900(x+$\frac{16}{x}$)+5800(0<x≤5),利用基本不等式可知x+$\frac{16}{x}$≥8(当且仅当x=4时取等号),进而计算可得结论.
解答 解:由题可知y=3(2x×150+$\frac{12}{x}$×400)+5800
=900(x+$\frac{16}{x}$)+5800(0<x≤5),
∵x+$\frac{16}{x}$≥2$\sqrt{x•\frac{16}{x}}$=8,当且仅当x=$\frac{16}{x}$即x=4时取等号,
∴y=900(x+$\frac{16}{x}$)+5800在x=4时取最小值900×8+5800=13000,
于是当侧面的长度为4米时,总造价最底.
点评 本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,利用基本不等式是解决本题的关键,注意解题方法的积累,属于基础题.
练习册系列答案
相关题目
9.如图,该程序运行后输出的结果是( )

| A. | 1023 | B. | 1024 | C. | 511 | D. | 512 |
13.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则实数m=( )
| A. | -$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$或0 | D. | 2 |
11.设a>0,b>0.若$\sqrt{3}$是3a与3b的等比中项,则ab的最大值为( )
| A. | 8 | B. | 4 | C. | 1 | D. | $\frac{1}{4}$ |