题目内容
若n∈N*,(1+| 2 |
| 2 |
(1)求a4+b4的值;
(2)证明:bn=
(1+
| ||||
| 2 |
(3)若[x]表示不超过x的最大整数.试证:当n为偶数时,[(1+
| 2 |
| 2 |
分析:(1)将(1+
)n展开后合并同类项,即可即可求得a4+b4的值.
(2))将(1+
)n,(1-
)n 展开后两式相加,便可证明.注意展开式中各项的符号.
(3)在(2)的基础上,2bn=(1+
)n+(1-
)n,当n为偶数时,0<(1-
)n<1,则有2bn-1<(1+
)n<2bn.
| 2 |
(2))将(1+
| 2 |
| 2 |
(3)在(2)的基础上,2bn=(1+
| 2 |
| 2 |
| 2 |
| 2 |
解答:解:(1)(1+
)4=
+
•
+
(
)2+
(
)3+
(
)4=12
+17,
所以a4=12,b4=17,a4+b4=29. …(3分)
(2)当n为偶数时,(1+
)n=
+
•
+
(
)2+…+
(
)n,bn=
+
(
)2+
(
)4+…+
(
)n,
而(1-
)n=
+
•(-
)+
(-
)2+…+
(-
)n,(1+
)n+(1-
)n=2[
+
(
)2+
(
)4+…+
(
)n],
所以bn=
成立. …(6分)
当n为奇数时,(1+
)n=
+
•
+
(
)2+…+
(
)n,bn=
+
(
)2+
(
)4+…+
(
)n-1,
而(1-
)n=
+
•(-
)+
(-
)2+…+
(-
)n,(1+
)n+(1-
)n=2[
+
(
)2+
(
)4+…+
(
)n-1],
所以bn=
成立. …(9分)
(3)由(2)可得2bn=(1+
)n+(1-
)n是正整数,-1<1-
<0,所以当n为偶数时,0<(1-
)n<1,…(12分)
则有2bn-1<(1+
)n<2bn,
所以2bn-1是不超过(1+
)n的最大整数,[(1+
)n]=2bn-1. …(14分)
当n为奇数时,[(1+
)n]=2bn. …(16分)
| 2 |
| C | 0 4 |
| C | 1 4 |
| 2 |
| C | 2 4 |
| 2 |
| C | 3 4 |
| 2 |
| C | 4 4 |
| 2 |
| 2 |
所以a4=12,b4=17,a4+b4=29. …(3分)
(2)当n为偶数时,(1+
| 2 |
| C | 0 n |
| C | 1 n |
| 2 |
| C | 2 n |
| 2 |
| C | n n |
| 2 |
| C | 0 n |
| C | 2 n |
| 2 |
| C | 4 n |
| 2 |
| C | n n |
| 2 |
而(1-
| 2 |
| C | 0 n |
| C | 1 n |
| 2 |
| C | 2 n |
| 2 |
| C | n n |
| 2 |
| 2 |
| 2 |
| C | 0 n |
| C | 2 n |
| 2 |
| C | 4 n |
| 2 |
| C | n n |
| 2 |
所以bn=
(1+
| ||||
| 2 |
当n为奇数时,(1+
| 2 |
| C | 0 n |
| C | 1 n |
| 2 |
| C | 2 n |
| 2 |
| C | n n |
| 2 |
| C | 0 n |
| C | 2 n |
| 2 |
| C | 4 n |
| 2 |
| C | n-1 n-1 |
| 2 |
而(1-
| 2 |
| C | 0 n |
| C | 1 n |
| 2 |
| C | 2 n |
| 2 |
| C | n n |
| 2 |
| 2 |
| 2 |
| C | 0 n |
| C | 2 n |
| 2 |
| C | 4 n |
| 2 |
| C | n-1 n-1 |
| 2 |
所以bn=
(1+
| ||||
| 2 |
(3)由(2)可得2bn=(1+
| 2 |
| 2 |
| 2 |
| 2 |
则有2bn-1<(1+
| 2 |
所以2bn-1是不超过(1+
| 2 |
| 2 |
当n为奇数时,[(1+
| 2 |
点评:本题考查二项式定理及其应用,考查计算、分类讨论、分析解决问题的能力.
练习册系列答案
相关题目