题目内容
若n∈N*,(1+
)n=
an+bn(an,bn∈N*).
(1)求a4+b4的值;
(2)证明:bn=
;
(3)若[x]表示不超过x的最大整数.试证:当n为偶数时,[(1+
)n]=2bn-1.当n为奇数时,上述结果是否依然成立?如果不成立,请用bn表示[(1+
)n](不必证明)
| 2 |
| 2 |
(1)求a4+b4的值;
(2)证明:bn=
(1+
| ||||
| 2 |
(3)若[x]表示不超过x的最大整数.试证:当n为偶数时,[(1+
| 2 |
| 2 |
(1)(1+
)4=
+
•
+
(
)2+
(
)3+
(
)4=12
+17,
所以a4=12,b4=17,a4+b4=29. …(3分)
(2)当n为偶数时,(1+
)n=
+
•
+
(
)2+…+
(
)n,bn=
+
(
)2+
(
)4+…+
(
)n,
而(1-
)n=
+
•(-
)+
(-
)2+…+
(-
)n,(1+
)n+(1-
)n=2[
+
(
)2+
(
)4+…+
(
)n],
所以bn=
成立. …(6分)
当n为奇数时,(1+
)n=
+
•
+
(
)2+…+
(
)n,bn=
+
(
)2+
(
)4+…+
(
)n-1,
而(1-
)n=
+
•(-
)+
(-
)2+…+
(-
)n,(1+
)n+(1-
)n=2[
+
(
)2+
(
)4+…+
(
)n-1],
所以bn=
成立. …(9分)
(3)由(2)可得2bn=(1+
)n+(1-
)n是正整数,-1<1-
<0,所以当n为偶数时,0<(1-
)n<1,…(12分)
则有2bn-1<(1+
)n<2bn,
所以2bn-1是不超过(1+
)n的最大整数,[(1+
)n]=2bn-1. …(14分)
当n为奇数时,[(1+
)n]=2bn. …(16分)
| 2 |
| C | 04 |
| C | 14 |
| 2 |
| C | 24 |
| 2 |
| C | 34 |
| 2 |
| C | 44 |
| 2 |
| 2 |
所以a4=12,b4=17,a4+b4=29. …(3分)
(2)当n为偶数时,(1+
| 2 |
| C | 0n |
| C | 1n |
| 2 |
| C | 2n |
| 2 |
| C | nn |
| 2 |
| C | 0n |
| C | 2n |
| 2 |
| C | 4n |
| 2 |
| C | nn |
| 2 |
而(1-
| 2 |
| C | 0n |
| C | 1n |
| 2 |
| C | 2n |
| 2 |
| C | nn |
| 2 |
| 2 |
| 2 |
| C | 0n |
| C | 2n |
| 2 |
| C | 4n |
| 2 |
| C | nn |
| 2 |
所以bn=
(1+
| ||||
| 2 |
当n为奇数时,(1+
| 2 |
| C | 0n |
| C | 1n |
| 2 |
| C | 2n |
| 2 |
| C | nn |
| 2 |
| C | 0n |
| C | 2n |
| 2 |
| C | 4n |
| 2 |
| C | n-1n-1 |
| 2 |
而(1-
| 2 |
| C | 0n |
| C | 1n |
| 2 |
| C | 2n |
| 2 |
| C | nn |
| 2 |
| 2 |
| 2 |
| C | 0n |
| C | 2n |
| 2 |
| C | 4n |
| 2 |
| C | n-1n-1 |
| 2 |
所以bn=
(1+
| ||||
| 2 |
(3)由(2)可得2bn=(1+
| 2 |
| 2 |
| 2 |
| 2 |
则有2bn-1<(1+
| 2 |
所以2bn-1是不超过(1+
| 2 |
| 2 |
当n为奇数时,[(1+
| 2 |
练习册系列答案
相关题目