题目内容
4.设函数f(x)是定义在R上的奇函数,且?x∈R,f(x+2)=-f(x).当x∈[-2,0)时,f(x)=2x,则f(2016)-f(2015)的值为( )| A. | -$\frac{1}{2}$ | B. | $\frac{9}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
分析 根据条件?x∈R,f(x+2)=-f(x),得到函数的周期是4,利用函数的奇偶性,将条件进行转化即可得到结论.
解答 解:∵?x∈R,f(x+2)=-f(x),
∴f(x+4)=f(x),
∴函数f(x)的周期是4,
∴f(2015)=f(504×4-1)=f(-1),
∵当x∈[-2,0)时,f(x)=2x,
∴f(-1)=$\frac{1}{2}$,∴f(2015)=f(-1)=$\frac{1}{2}$,
∵f(2016)=f(504×4)=f(0)=0,
∴f(2016)-f(2015)=-$\frac{1}{2}$,
故选:A.
点评 本题主要考查函数值的计算,根据函数奇偶性和周期性进行转化是解决本题的关键.
练习册系列答案
相关题目
15.已知不等式loga(1-$\frac{1}{x+2}$)>0的解集是(-∞,-2),则a的取值范围是( )
| A. | 0<a$<\frac{1}{2}$ | B. | $\frac{1}{2}$<a<1 | C. | a>2 | D. | a>1 |
19.已知空间向量$\overrightarrow{AB}$,$\overrightarrow{BC}$,$\overrightarrow{CD}$,$\overrightarrow{AD}$,则下列结论正确的是( )
| A. | $\overrightarrow{AB}$=$\overrightarrow{BC}$+$\overrightarrow{CD}$ | B. | $\overrightarrow{AB}$-$\overrightarrow{DC}$+$\overrightarrow{BC}$=$\overrightarrow{AD}$ | C. | $\overrightarrow{AD}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$+$\overrightarrow{DC}$ | D. | $\overrightarrow{BC}$=$\overrightarrow{BD}$-$\overrightarrow{DC}$ |
17.已知函数f(x)的图象如图:则满足f(2x)•f(lg(x2-6x+120))≤0的x的取值范围是( )

| A. | (-∞,1] | B. | [1,+∞) | C. | [0,+∞) | D. | (-∞,2] |