题目内容
14.已知定义在R上的奇函数f(x)=x3+bx2+cx+d在x=±1处取得极值.(Ⅰ)求函数f(x)的解析式及单调增区间;
(Ⅱ)证明:对于区间[-1,1]上任意两个自变量x1,x2,都有|f(x1)-f(x2)|≤4成立.
分析 (Ⅰ)先根据函数的奇偶性判断b,d的值,在对函数进行求导,令f'(1)=0可求出c的值,进而确定函数解析式.
(Ⅱ)根据函数的单调性求出f(x)在[-1,1]上的最大值与最小值,然后对|f(x1)-f(x2)|进行放缩即可得证.
解答 解:(Ⅰ)∵f(x)是R上的奇函数,
∴b=d=0,f(x)=x3+cx,
∴f'(x)=3x2+c,
∵在x=±1处取得极值,
∴f'(1)=0∴c=-3,
∴f(x)=x3-3x;
∴f′(x)=3(x+1)(x-1),
令f′(x)>0,解得:x>1或x<-1,
故f(x)在(-∞,-1),(1,+∞)递增;
(Ⅱ)证明:∵f'(x)=3x2-3
∴令f'(x)=3x2-3=0,x=±1且-1<x<1时,f'(x)<0,函数f(x)单调递减
∵f(x)max=f(-1)=2,f(x)min=f(1)=-2
|f(x1)-f(x2)|≤f(x)max-f(x)min=f(-1)-f(1)=2+2=4.
点评 本题主要考查函数的单调性、极值与导函数之间的关系.属中档题.
练习册系列答案
相关题目
9.在△ABC中,角A,B,C的对边分别是a,b,c,若C=45°,c=$\sqrt{2}$a,则A等于( )
| A. | 120° | B. | 60° | C. | 150° | D. | 30° |
6.若过点P(a,a)与曲线f(x)=xlnx相切的直线有两条,则实数a的取值范围是( )
| A. | (e,+∞) | B. | (-∞,e) | C. | (0,$\frac{1}{e}$) | D. | (1,+∞) |