题目内容
【题目】已知函数
.
(1)若
在
,
处取得极值.
①求
、
的值;
②若存在
,使得不等式
成立,求
的最小值;
(2)当
时,若
在
上是单调函数,求
的取值范围.
【答案】(1)
,
;(2)![]()
【解析】试题分析:(1)①先求
,根据函数在
处取得极值,则
,代入可求得
的值;
②转化为
,从而求函数
在区间
上的最小值,从而求得
的值;
(2)当
时,
,①当
时,符合题意;
②当
时,分
讨论
在
上正负,以确定函数的单调性的条件,进而求出
的取值范围.
试题解析:
(1)①∵
,∴
,
∵
在
,
处取得极值,∴
,
,
即
解得
,∴所求
、
的值分别为
.
②在
存在
,使得不等式
成立,只需
,由
,∴当
时,
,故
在
是单调递减;当
时,
,故
在
是单调递增;当
时,
,故
在
是单调递减;∴
是
在
上的极小值,
,且
,又
,∴
,∴
,∴
,∴
的取值范围为
,所以
的最小值为
.
(2)当
时,
,
①当
时,
,则
在
上单调递增;
②当
时,∵
,∴
,∴
,则
在
上单调递增;
③当
时,设
,只需
,从而得
,此时
在
上单调递减;
综上得,
的取值范围是![]()
练习册系列答案
相关题目
【题目】某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名高三学生平均每天课外体育锻炼时间进行调查,如表:(平均每天锻炼的时间单位:分钟)
平均每天锻炼的时间/分钟 |
|
|
|
|
|
|
总人数 | 20 | 36 | 44 | 50 | 40 | 10 |
将学生日均课外体育锻炼时间在
的学生评价为“课外体育达标”.
(1)请根据上述表格中的统计数据填写下面的
列联表;
课外体育不达标 | 课外体育达标 | 合计 | |
男 | |||
女 | 20 | 110 | |
合计 |
(2)通过计算判断是否能在犯错误的概率不超过
的前提下认为“课外体育达标”性别有关?
参考公式
,其中![]()
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |