题目内容
已知函数f(x)=
x3-2ax2+3x(x∈R).
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.
(1)若a=1,点P为曲线y=f(x)上的一个动点,求以点P为切点的切线斜率取最小值时的切线方程
(2)若函数y=f(x)在(0,+∞)上为单调增函数,试求满足条件的最大整数a.
⑴3x-3y+2=0,⑵1
(1)设切线的斜率为k,则k=
=2x2-4x+3=2(x-1)2+1, …………2分
当x=1时,kmin=1.又f(1)=
,所以所求切线的方程为y-
=x-1,
即3x-3y+2=0. ……………………6分
(2)
=2x2-4ax+3,要使y=f(x)为单调递增函数,必须满足
>0,即对任意的x∈(0,+∞),恒有
>0,
=2x2-4ax+3>0, ……………………8分
∴a<
=
+
,而
+
≥
,当且仅当x=
时,等号成立.
所以a<
,……………11分
所求满足条件的a值为1 ……………12分
当x=1时,kmin=1.又f(1)=
即3x-3y+2=0. ……………………6分
(2)
∴a<
所以a<
所求满足条件的a值为1 ……………12分
练习册系列答案
相关题目