题目内容
10.在数列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),则a2016的值为( )| A. | -$\frac{1}{4}$ | B. | 5 | C. | $\frac{4}{5}$ | D. | 以上都不对 |
分析 由a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),可得an=an+3,利用周期性即可得出.
解答 解:数列{an}中,a1=-$\frac{1}{4}$,an=1-$\frac{1}{{a}_{n-1}}$(n>1),
得a2=1-$\frac{1}{{a}_{1}}$=5,a3=1-$\frac{1}{{a}_{2}}$=1-$\frac{1}{5}$=$\frac{4}{5}$,a4=1-$\frac{1}{\frac{4}{5}}$=$-\frac{1}{4}$,…
∴an=an+3,
则a2016=a3×671+3=a3=$\frac{4}{5}$.
故选:C.
点评 本题考查了数列的递推关系、周期性,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
5.
某大学为了在2016年全国大学生成语听写大赛取得优秀成绩,抽调男女各20名学生组成集训队进行成语听写集训,集训结束时,为了检验集训效果,对所有集训队员进行成语听写考核,试题为听写100个常用成语(每个1分,满分100分),考核成绩如图茎叶图所示:
(I)若大于或等于80分为优秀队员,80分以下为非优秀队员,根据茎叶图填写下面2×2列联表,并判断能否有95%的把握认为队员的优秀与性别有关?
(Ⅱ)若从考核成绩95分以上(包括95分)的队员中任选两人代表这所大学参加全国大学生成语听写大赛,求至少有一名男队员参加的概率.
下面的临界值表供参考:
(参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(I)若大于或等于80分为优秀队员,80分以下为非优秀队员,根据茎叶图填写下面2×2列联表,并判断能否有95%的把握认为队员的优秀与性别有关?
| 非优秀 | 优秀 | 总数 | |
| 男 | 20 | ||
| 女 | 20 | ||
| 总数 | 40 |
下面的临界值表供参考:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
15.
如图所示的程序框图中输入x的值是[1,9]内任取的一个实数,执行该程序,则输出x的值小于55的概率为( )
| A. | $\frac{3}{8}$ | B. | $\frac{5}{8}$ | C. | $\frac{1}{3}$ | D. | $\frac{2}{3}$ |
2.设p:?x0∈R,mx02+1≤0,q:x∈R,x2+mx+1>0,若p∨q为真命题,则实数m的取值范围是( )
| A. | (-∞,2) | B. | (2,+∞) | C. | (-2,2) | D. | (-∞,2]∪[2,+∞) |
20.函数f(x)=$\frac{1}{3}$ax3+$\frac{1}{2}$ax2-2ax+2a+1的图象经过四个象限的一个充分但不必要条件是( )
| A. | -$\frac{4}{3}$<a<-$\frac{1}{3}$ | B. | -1<a<-$\frac{1}{2}$ | C. | -$\frac{6}{5}$<a<-$\frac{3}{16}$ | D. | -2<a<0 |