题目内容

12.已知tan$\frac{x+y}{4}$=3,tan$\frac{x-y}{4}$=5,则cosy=$\frac{33}{65}$.

分析 由tan$\frac{x}{2}$=tan($\frac{x+y}{4}+\frac{x-y}{4}$),利用正切函数加法定理求出tan$\frac{x}{2}$,由此利用万能公式能求出cosy.

解答 解:∵tan$\frac{x+y}{4}$=3,tan$\frac{x-y}{4}$=5,
∴tan$\frac{x}{2}$=tan($\frac{x+y}{4}+\frac{x-y}{4}$)=$\frac{tan\frac{x+y}{4}+tan\frac{x-y}{4}}{1-tan\frac{x+y}{4}tan\frac{x-y}{4}}$=$\frac{3+5}{1-3×5}$=-$\frac{4}{7}$,
∴cosy=$\frac{1-ta{n}^{2}\frac{x}{2}}{1+ta{n}^{2}\frac{x}{2}}$=$\frac{1-\frac{16}{49}}{1+\frac{16}{49}}$=$\frac{33}{65}$.
故答案为:$\frac{33}{65}$.

点评 本题考查三角函数的求法,是中档题,解题时要认真审题,注意正切函数加法定理和万能公式的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网