题目内容
2.观察下列式子:13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述规律,则83=57+59+61+63+65+67+69+71.
分析 观察可看出:观察题目等式可知,第8个等式的右边是8个连续的奇数之和,所以可以逐行写出,最终可求得结果.
解答 解:观察题目等式可知,第8个等式的右边是8个连续的奇数之和,
13=1
23=3+5,
33=7+9+11,
43=13+15+17+19,
53=21+23+25+27+29,
63=31+33+35+37+39+41,
73=43+45+47+49+51+53+55,
83=57+59+61+63+65+67+69+71,
故答案为:57+59+61+63+65+67+69+71
点评 这是一道考查归纳推理的问题,一般是根据前面的几项(或式子),找出一般性的规律,然后再对所求的情况求解,本题因为8不大,所以可以采用列举法.
练习册系列答案
相关题目
17.
我国自主研制的第一个月球探测器--“嫦娥一号”卫星在西昌卫星发射中心成功发射后,在地球轨道上经历3次调相轨道变轨,奔向月球,进入月球轨道,“嫦娥一号”轨道是以地心为一个焦点的椭圆,设地球半径为R,卫星近地点,远地点离地面的距离分别是$\frac{R}{2}$,$\frac{5R}{2}$(如图所示),则“嫦娥一号”卫星轨道的离心率为( )
| A. | $\frac{2}{5}$ | B. | $\frac{1}{5}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |
11.定义在[0,+∞)上的函数f(x),当x∈[0,2]时,f(x)=4(|x-1|-1),且对任意实数 x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1),若方程f(x)-log a x=0有且仅有三个实根,则实数a的取值范围是( )
| A. | [$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$) | B. | ($\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$) | C. | ($\frac{1}{10}$,$\frac{1}{2}$) | D. | [$\frac{1}{10}$,$\frac{1}{2}$) |