题目内容
19.直三棱柱ABC-A1B1C1中,∠BCA=90°,M,N分别是A1B1,B1C1的中点,BC=CA=CC1,求BM与AN所成的角的余弦值.分析 以C为原点,直线CA为x轴,直线CB为y轴,直线CC1为z轴,利用向量法能求出BM与AN所成的角的余弦值.
解答
解:以C为原点,直线CA为x轴,直线CB为y轴,直线CC1为z轴,
建立空间直角坐标系,
设BC=CA=CC1=2,
则B(0,2,0),A1(2,0,2),B1(0,2,2),
M(1,1,2),C1(0,0,2),N(0,1,2),A(2,0,0),
$\overrightarrow{BM}$=(1,-1,2),$\overrightarrow{AN}$=(-2,1,2),
设BM与AN所成角为θ,
则cosθ=|cos<$\overrightarrow{BM},\overrightarrow{AN}$>|=$\frac{|\overrightarrow{BM}•\overrightarrow{AN}|}{|\overrightarrow{BM}|•|\overrightarrow{AN}|}$=$\frac{|-2-1+4|}{\sqrt{6}•\sqrt{9}}$=$\frac{\sqrt{6}}{18}$.
∴BM与AN所成的角的余弦值为$\frac{\sqrt{6}}{18}$.
点评 本题考查异面直线所成角的余弦值的求法,是基础题,解题时要认真审题,注意向量法的合理运用.
练习册系列答案
相关题目
9.半径为1的圆O内切于正方形ABCD,正六边形EFGHPR内接于圆O,当EFGHPR绕圆心O旋转时,$\overrightarrow{AE}$•$\overrightarrow{OF}$的取值范围是( )
| A. | [1-$\sqrt{2}$,1+$\sqrt{2}$] | B. | [-1$-\sqrt{2}$,-1+$\sqrt{2}$] | C. | [$\frac{1}{2}$-$\sqrt{2}$,$\frac{1}{2}$$+\sqrt{2}$] | D. | [$-\frac{1}{2}$-$\sqrt{2}$,$-\frac{1}{2}$+$\sqrt{2}$] |
8.已知{an}为等差数列,且a6=4,则a4a8的最大值为( )
| A. | 6 | B. | 10 | C. | 16 | D. | 20 |