题目内容
下图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,若水面下降0.42米后,则水面宽为( )
(A)2.2米 (B)4.4米 (C)2.4米 (D)4米
右边程序框图的算法思路源于数学名著《几何原本》中的“辗转相除法”,执行该程序框图(图中“m MOD n”表示除以的余数),若输入的,分别为495,135,则输出的=( )
A.0 B.5 C.45 D.90
已知F1,F2是双曲线(a>0,b>0)的左、右焦点,若双曲线左支上存在一点P与点F2关于直线y=x对称,则该双曲线的离心率为( )
A.2 B. C. D.3
已知某中学联盟举行了一次“盟校质量调研考试”活动.为了解本次考试学生的某学科成绩情况,从中抽取部分学生的分数(满分为100分,得分取正整数,抽取学生的分数均在之内)作为样本(样本容量为n)进行统计.按照,,,,的分组作出频率分布直方图,并作出样本分数的茎叶图(茎叶图中仅列出了得分在,的数据).
(Ⅰ)求样本容量n和频率分布直方图中的x、y的值;
(Ⅱ)在选取的样本中,从成绩在80分以上(含80分)的学生中随机抽取2名学生参加“省级学科基础知识竞赛”,求所抽取的2名学生中恰有一人得分在内的概率.
在平面直角坐标系xoy中,以x的非负半轴为始边作两个锐角,它们的终边分别与单位圆交于点A,B,已知A的横坐标为,B的纵坐标为,则( )
(A) (B) (C) (D)
如图“月亮图”是由曲线与构成,曲线 是以原点O为中心,为焦点的椭圆的一部分,曲线是以O为顶点,为焦点的抛物线的一部分,是两条曲线的一个交点,,.
(Ⅰ)求曲线和的方程;
(Ⅱ)过作一条与轴不垂直的直线,分别与曲线,依次交于B,C,D,E四点,若G为CD的中点、H为BE的中点,问:是否为定值?若是求出该定值;若不是说明理由.
在平面直角坐标系xoy中,以x的非负半轴为始边作两个锐角,它们的终边分别与单位圆交于点A,B,已知A的横坐标为,B的纵坐标为,则______.
已知某几何体的直观图和三视图如下图所示,其正视图为矩形,侧视图为等腰直角三角形,俯视图为直角梯形.
(1)求证:BN丄平面C1B1N;
(2)设M为AB中点,在BC边上找一点P,使MP//平面CNB1,并求的值;
(3)求点A到平面CB1N的距离.
若复数是实数,则实数( )
A. B.1 C. D.2