题目内容
已知双曲线方程是x2-=1,过定点P(2,1)作直线交双曲线于P1、P2两点,并使P(2,1)为P1P2的中点,则此直线方程是____________.
4x-y-7=0
已知α、β∈,sinα=,tan(α-β)=-,求cosβ的值.
已知sin=,那么cosα=________.
已知一扇形的中心角是α,所在圆的半径是R.
(1) 若α=60°,R=10cm,求扇形的弧长及该弧所在的弓形面积;
(2) 若扇形的周长是一定值C(C>0),当α为多少弧度时,该扇形有最大面积?
已知α=,回答下列问题.
(1) 写出所有与α终边相同的角;
(2) 写出在(-4π,2π)内与α终边相同的角;
(3) 若角β与α终边相同,则是第几象限的角?
如图,在平面直角坐标系xOy中,M、N分别是椭圆+=1的顶点,过坐标原点的直线交椭圆于P、A两点,其中P在第一象限,过P作x轴的垂线,垂足为C,连结AC,并延长交椭圆于点B,设直线PA的斜率为k.
(1) 若直线PA平分线段MN,求k的值;
(2) 当k=2时,求点P到直线AB的距离d;
(3) 对任意k>0,求证:PA⊥PB.
如图,在平面直角坐标系xOy中,圆C:(x+1)2+y2=16,点F(1,0),E是圆C上的一个动点,EF的垂直平分线PQ与CE交于点B,与EF交于点D.
(1) 求点B的轨迹方程;
(2) 当点D位于y轴的正半轴上时,求直线PQ的方程;
(3) 若G是圆C上的另一个动点,且满足FG⊥FE,记线段EG的中点为M,试判断线段OM的长度是否为定值?若是,求出该定值;若不是,说明理由.
已知椭圆+y2=1的左顶点为A,过A作两条互相垂直的弦AM、AN交椭圆于M、N两点.
(1) 当直线AM的斜率为1时,求点M的坐标;
(2) 当直线AM的斜率变化时,直线MN是否过x轴上的一定点?若过定点,请给出证明,并求出该定点;若不过定点,请说明理由.
方程=1表示椭圆,则k的取值范围是________.