题目内容
正项数列{an}的前n项和为Sn,且2
=an+1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,数列{bn}的前n项和为Tn,求证:Tn<
.
| Sn |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| an•an+1 |
| 1 |
| 2 |
(Ⅰ)∵2
=a1+1,
∴a1=1.
∵an>0,2
=an+1,
∴4Sn=(an+1)2.①
∴4Sn-1=(an-1+1)2(n≥2).②
①-②,得4an=an2+2an-an-12-2an-1,
即(an+an-1)(an-an-1-2)=0,
而an>0,
∴an-an-1=2(n≥2).
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.
(Ⅱ)bn=
=
(
-
).
Tn=b1+b2++bn=
(1-
)+
(
-
)++
(
-
)=
(1-
)<
.
| S1 |
∴a1=1.
∵an>0,2
| Sn |
∴4Sn=(an+1)2.①
∴4Sn-1=(an-1+1)2(n≥2).②
①-②,得4an=an2+2an-an-12-2an-1,
即(an+an-1)(an-an-1-2)=0,
而an>0,
∴an-an-1=2(n≥2).
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.
(Ⅱ)bn=
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
Tn=b1+b2++bn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
练习册系列答案
相关题目