题目内容

正项数列{an}的前n项和为Sn,且2
Sn
=an+1

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
anan+1
,数列{bn}的前n项和为Tn,求证:Tn
1
2
(Ⅰ)∵2
S1
=a1+1

∴a1=1.
∵an>0,2
Sn
=an+1

∴4Sn=(an+1)2.①
∴4Sn-1=(an-1+1)2(n≥2).②
①-②,得4an=an2+2an-an-12-2an-1
即(an+an-1)(an-an-1-2)=0,
而an>0,
∴an-an-1=2(n≥2).
故数列{an}是首项为1,公差为2的等差数列.
∴an=2n-1.
(Ⅱ)bn=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

Tn=b1+b2++bn=
1
2
(1-
1
3
)+
1
2
(
1
3
-
1
5
)++
1
2
(
1
2n-1
-
1
2n+1
)
=
1
2
(1-
1
2n+1
)<
1
2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网