题目内容
【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列
满足:
,
,
.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前
项所占的格子的面积之和为
,每段螺旋线与其所在的正方形所围成的扇形面积为
,则下列结论正确的是( )
![]()
A.
B.![]()
C.
D.![]()
【答案】ABD
【解析】
根据题中递推公式,求出
,
,数列的前
项和,数列的奇数项和,与选项对比即可.
对于A选项,因为斐波那契数列总满足
,
所以
,
,
,
类似的有,
,
累加得
,
由题知
,
故选项A正确,
对于B选项,因为
,
,
,
类似的有
,
累加得
,
故选项B正确,
对于C选项,因为
,
,
,
类似的有
,
累加得
,
故选项C错误,
对于D选项,可知扇形面积
,
故
,
故选项D正确,
故选:ABD.
【题目】为利于分层教学,某学校根据学生的情况分成了A,B,C三类,经过一段时间的学习后在三类学生中分别随机抽取了1个学生的5次考试成缎,其统计表如下:
A类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 145 | 83 | 95 | 72 | 110 |
,
;
B类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 93 | 90 | 76 | 101 |
,
;
C类
第x次 | 1 | 2 | 3 | 4 | 4 |
分数y(满足150) | 85 | 92 | 101 | 100 | 112 |
,
;
(1)经计算己知A,B的相关系数分别为
,
.,请计算出C学生的
的相关系数,并通过数据的分析回答抽到的哪类学生学习成绩最稳定;(结果保留两位有效数字,
越大认为成绩越稳定)
(2)利用(1)中成绩最稳定的学生的样本数据,已知线性回归直线方程为
,利用线性回归直线方程预测该生第十次的成绩.
附相关系数
,线性回归直线方程
,
,
.
【题目】某地随着经济的发展,居民收入逐年增长,经统计知年份x和储蓄
存款y (千亿元)具有线性相关关系,下表是该地某银行连续五年的储蓄存款(年底余额),
如下表(1):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 10 |
表(1)
为了研究计算的方便,工作人员将上表的数据进行了处理,令![]()
得到下表(2):
时间代号t | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | 2 | 3 | 5 |
表(2)
(1)由最小二乘法求
关于t的线性回归方程;
(2)通过(1)中的方程,求出y关于x的线性回归方程;
(3)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?
(附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线
的斜率和截距的最小二乘估计分别为
,
)