题目内容
锐角△ABC中,a,b,c分别是角A,B,C的对边长,a=8,B=
,S△ABC=24
,
(1)求:边长c;
(2)求:△ABC中最小内角的正弦值和最大内角的余弦值.
| π |
| 3 |
| 3 |
(1)求:边长c;
(2)求:△ABC中最小内角的正弦值和最大内角的余弦值.
(1)S△ABC=
acsinB=24
,a=8,B=
,
∴c=12;
(2)由余弦定理得:b2=a2+c2-2accosB,即b2=112,
∴b=4
,
∴c>b>a,A为最小角,C为最大角,
∵
=
,
∴sinA=
=
,cosA=
,
∴cosC=cos[π-(A+B)]
=-cos(A+B)
=sinAsinB-cosAcosB
=
•
-
•
=
.
| 1 |
| 2 |
| 3 |
| π |
| 3 |
∴c=12;
(2)由余弦定理得:b2=a2+c2-2accosB,即b2=112,
∴b=4
| 7 |
∴c>b>a,A为最小角,C为最大角,
∵
| a |
| sinA |
| b |
| sinB |
∴sinA=
| asinB |
| b |
| ||
| 7 |
2
| ||
| 7 |
∴cosC=cos[π-(A+B)]
=-cos(A+B)
=sinAsinB-cosAcosB
=
| ||
| 7 |
| ||
| 2 |
2
| ||
| 7 |
| 1 |
| 2 |
| ||
| 14 |
练习册系列答案
相关题目