题目内容

为了得到函数y=4sin(2x+
π
3
),x∈R的图象,只需把函数y=4sinx,x∈R的图象上所有的点(  )
A、把各点的横坐标缩短到原来的
1
2
倍,再向左平移
π
6
个单位长度
B、把各点的横坐标缩短到原来的
1
2
倍,再向左平移
π
3
个单位长度
C、把各点的横坐标伸长到原来的2倍,再向左平移
π
6
个单位长度
D、把各点的横坐标伸长到原来的2倍,再向左平移
π
3
个单位长度
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据y=Asin(ωx+φ)的图象变换规律,可得结论.
解答: 解:把函数y=4sinx,x∈R的图象上所有的点的横坐标缩短到原来的
1
2
倍,
可得函数y=4sin2x,x∈R的图象;
再把所得图象向左平移
π
6
个单位长度,可得函数y=4sin2(x+
π
6
)=4sin(2x+
π
3
),x∈R的图象,
故选:A.
点评:本题主要考查y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网