题目内容

18.方程cos2x+cos22x+cos24x+cos28x=$\sqrt{\frac{sin16x}{sinx}}$的解集是{x|x=2kπ,k∈Z}.

分析 利用二倍角正弦把等式右边变形,然后结合不等式成立的条件可得答案.

解答 解:由方程cos2x+cos22x+cos24x+cos28x=$\sqrt{\frac{sin16x}{sinx}}$,
得:cos2x+cos22x+cos24x+cos28x=4$\sqrt{cosx•cos2x•cos4x•cos8x}$=4$\sqrt{|cosx•cos2x•cos4x•cos8x|}$,
∵cos2x+cos22x+cos24x+cos28x$≥4\root{4}{co{s}^{2}x•co{s}^{2}2x•co{s}^{2}4x•co{s}^{2}8x}$=$4\sqrt{|cosx•cos2x•cos4x•cos8x|}$.
当且仅当cos2x=cos22x=cos24x=cos28x,即|cosx|=|cos2x|=cos4x|=cos8x|时上式“=”成立.
∴x=2kπ,k∈Z.
∴方程cos2x+cos22x+cos24x+cos28x=$\sqrt{\frac{sin16x}{sinx}}$的解集是{x|x=2kπ,k∈Z}.
故答案为:{x|x=2kπ,k∈Z}.

点评 本题考查三角函数中的恒等变换应用,考查了基本不等式成立的条件,考查了三角函数的求值,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网