ÌâÄ¿ÄÚÈÝ
15£®¸ø³öÏÂÁÐËĸöÃüÌ⣺¢Ùij°à¼¶Ò»¹²ÓÐ52ÃûѧÉú£¬ÏÖ½«¸Ã°àѧÉúËæ»ú±àºÅ£¬ÓÃϵͳ³éÑùµÄ·½·¨³éȡһ¸öÈÝÁ¿Îª4µÄÑù±¾£¬ÒÑÖª7ºÅ¡¢33ºÅ¡¢46ºÅͬѧÔÚÑù±¾ÖУ¬ÄÇôÑù±¾ÖÐÁíһλͬѧµÄ±àºÅΪ23£»
¢ÚÒ»×éÊý¾Ý1£¬2£¬3£¬3£¬4£¬5µÄƽ¾ùÊý¡¢ÖÚÊý¡¢ÖÐλÊý¶¼Ïàͬ£»
¢ÛÒ»×éÊý¾Ýa£¬0£¬1£¬2£¬3£¬Èô¸Ã×éÊý¾ÝµÄƽ¾ùֵΪ1£¬ÔòÑù±¾µÄ±ê×¼²îΪ2£»
¢Ü¸ù¾Ý¾ßÓÐÏßÐÔÏà¹Ø¹ØÏµµÄÁ½¸ö±äÁ¿µÄͳ¼ÆÊý¾ÝËùµÃµÄ»Ø¹éÖ±Ïß·½³ÌΪ$\stackrel{¡Ä}{y}$=a+bxÖУ¬b=2£¬$\overline{x}$=1£¬$\overline{y}$=3£¬Ôòa=1£®ÆäÖÐÕæÃüÌâΪ£¨¡¡¡¡£©
| A£® | ¢Ù¢Ú¢Ü | B£® | ¢Ú¢Ü | C£® | ¢Ú¢Û¢Ü | D£® | ¢Û¢Ü |
·ÖÎö ÔÚ¢ÙÖУ¬ÓÉϵͳ³éÑùµÄÔÀíÖªÑù±¾ÁíһλͬѧµÄ±àºÅΪ20£»ÔÚ¢ÚÖУ¬Çó³öÊý¾ÝµÄƽ¾ùÊý¡¢ÖÐλÊý¡¢ÖÚÊýÄÜÅÐ¶Ï¶Ô´í£»ÔÚ¢ÛÖУ¬Çó³öÑù±¾µÄƽ¾ùÖµ¡¢Ñù±¾µÄ·½²î¡¢±ê×¼²î£¬ÄÜÅÐ¶Ï¶Ô´í£»ÔÚ¢ÜÖУ¬°Ñ£¨1£¬3£©´úÈë»Ø¹éÖ±Ïß·½³Ì£¬ÄÜÅÐ¶Ï¶Ô´í£®
½â´ð ½â£ºÔÚ¢ÙÖУ¬ÓÉϵͳ³éÑùµÄÔÀíÖª³éÑùµÄ¼ä¸ôΪ52¡Â4=13£¬
¹Ê³éÈ¡µÄÑù±¾µÄ±àºÅ·Ö±ðΪ7£¬7+13£¬7+13¡Á2£¬7+13¡Á3£¬
¼´7ºÅ¡¢20ºÅ¡¢33ºÅ¡¢46ºÅ£¬¹Ê¢ÙÊǼÙÃüÌ⣻
ÔÚ¢ÚÖУ¬Êý¾Ý1£¬2£¬3£¬3£¬4£¬5µÄƽ¾ùÊýΪ$\frac{1}{6}$£¨1+2+3+4+5£©=3£¬
ÖÐλÊýΪ3£¬ÖÚÊýΪ3£¬¶¼Ïàͬ£¬¹Ê¢ÚÊÇÕæÃüÌ⣻
ÔÚ¢ÛÖУ¬ÓÉÌâ¿ÉÖªÑù±¾µÄƽ¾ùֵΪ1£¬ËùÒÔa+0+1+2+3=5£¬½âµÃa=-1£¬
¹ÊÑù±¾µÄ·½²îΪ£º$\frac{1}{5}$[£¨-1-1£©2+£¨0-1£©2+£¨1-1£©2+£¨2-1£©2+£¨3-1£©2]=2£¬±ê×¼²îΪ$\sqrt{2}$£¬¹Ê¢ÛÊǼÙÃüÌ⣻
ÔÚ¢ÜÖУ¬»Ø¹éÖ±Ïß·½³ÌΪ$\widehat{y}$=bx+2µÄÖ±Ïß¹ýµã£¨$\overline{x}$£¬$\overline{y}$£©£¬
°Ñ£¨1£¬3£©´úÈë»Ø¹éÖ±Ïß·½³Ì$\widehat{y}$=bx+2£¬µÃb=1£¬¹Ê¢ÜÊÇÕæÃüÌ⣻
¹ÊÑ¡£ºB£®
µãÆÀ ±¾¿¼²éÃüÌâµÄÕæ¼ÙÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâϵͳ³éÑù¡¢ÆµÂÊ·Ö²¼Ö±·½Í¼¡¢ÖÚÊý¡¢ÖÐλÊý¡¢Æ½¾ùÊý¡¢ÏßÐԻع鷽³ÌµÈ֪ʶµãµÄºÏÀíÔËÓã®
| A£® | $y=\sqrt{x}$£¨x¡Ý1£© | B£® | $y=\sqrt{-x}$£¨x¡Ü-1£© | C£® | $y=\sqrt{x}$£¨x¡Ý0£© | D£® | $y=\sqrt{-x}$£¨x¡Ü0£© |
| A£® | a2+b2ÓÐ×îСֵ | B£® | $\sqrt{ab}$ÓÐ×îСֵ | C£® | $\frac{1}{a}+\frac{1}{b}$ÓÐ×î´óÖµ | D£® | $\frac{1}{{\sqrt{a}+\sqrt{b}}}$ÓÐ×î´óÖµ |
| A£® | a£¾c£¾b | B£® | b£¾c£¾a | C£® | b£¾a£¾c | D£® | c£¾a£¾b |