题目内容
19.在梯形ABCD中AD∥BC,已知AD=4,BC=6,若$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$(m,n∈R)则$\frac{m}{n}$=( )| A. | -3 | B. | -$\frac{1}{3}$ | C. | $\frac{1}{3}$ | D. | 3 |
分析 利用平面向量的三角形法以及平面向量基本定理求出m,n.
解答
解:由题意,如图,$\overrightarrow{CD}$=m$\overrightarrow{BA}$+n$\overrightarrow{BC}$=$\overrightarrow{CE}+\overrightarrow{ED}=-\frac{1}{3}\overrightarrow{BC}+\overrightarrow{BA}$,
所以n=$-\frac{1}{3}$,m=1,所以$\frac{m}{n}$=-3.
故选:A.
点评 本题考查了平面向量的三角形法则和平面向量基本定理;属于基础题.
练习册系列答案
相关题目
9.已知a,b,c表示直线,α表示平面,下列条件中,能使a⊥α的是( )
| A. | a⊥b,a⊥c,b?α,c?α | B. | a∥b,b⊥α | C. | a∩b=A,b?α,a⊥b | D. | a⊥b,b∥α |
14.定义域为[a,b]的函数f(x)的图象的左、右端点分别为A、B,点M(x,y)是f(x)的图象上的任意一点,且x=λa+(1-λ)b(λ∈R).向量$\overrightarrow{ON}=λ\overrightarrow{OA}+(1-λ)\overrightarrow{OB}$,其中O为坐标原点.若|$\overrightarrow{MN}$|≤k恒成立,则称函数f(x)在[a,b]上“k阶线性相似”.若函数y=x2-3x+2在[1,3]上“k阶线性相似”,则实数k的取值范围为( )
| A. | [0,+∞] | B. | [1,+∞] | C. | [$\frac{3}{2}$,+∞] | D. | [$\frac{1}{2}$,+∞) |
8.已知x,y满足约束条件$\left\{\begin{array}{l}{x≥1}\\{y≥-1}\\{4x+y≤9}\\{x+y≤3}\end{array}\right.$,若2≤m≤4,则目标函数z=y+mx的最大值的变化范围是( )
| A. | [1,3] | B. | [4,6] | C. | [4,9] | D. | [5,9] |
9.已知抛物线y2=2px(p>0)的焦点为F,若过点F且斜率为2$\sqrt{2}$的直线与抛物线在第一象限的交点为P(x0,2$\sqrt{2}$),则x0等于( )
| A. | 2 | B. | 2+$\sqrt{2}$ | C. | 3+$\sqrt{2}$ | D. | 3$\sqrt{2}$ |