题目内容
10.已知函数y=f(x)的图象是由函数$y=sin({2x+\frac{π}{6}})$的图象向左平移$\frac{π}{6}$个单位得到的,则$f({\frac{π}{3}})$=( )| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | 0 | D. | $\frac{1}{2}$ |
分析 直接利用三角函数图象的平移得f(x)的函数解析式,利用特殊角的三角函数值即可得解.
解答 解:∵函数$y=sin({2x+\frac{π}{6}})$的图象向左平移$\frac{π}{6}$个单位得到f(x)=sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=sin(2x+$\frac{π}{2}$)=cos2x,
∴$f({\frac{π}{3}})$=cos$\frac{2π}{3}$=-cos$\frac{π}{3}$=-$\frac{1}{2}$.
故选:B.
点评 本题考查了函数y=Asin(ωx+φ)的图象变换,特殊角的三角函数值的应用,三角函数的平移原则为左加右减上加下减.属于基础题.
练习册系列答案
相关题目
20.已知函数f(x)=x3-3x2+1,g(x)=$\left\{\begin{array}{l}{x+\frac{1}{4x},x>0}\\{-x^2-6x-8,x≤0}\end{array}\right.$,则方程g[f(x)]-1=0的根的个数为( )
| A. | 3个 | B. | 4个 | C. | 5个 | D. | 6个 |
1.已知$sin(π+α)=-\frac{1}{2}$,那么$cos(\frac{3}{2}π+α)$=( )
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
18.设函数$f(x)={e^{{x^2}-3x}}$(e为自然底数),则使f(x)<1成立的一个充分不必要条件是( )
| A. | 0<x<1 | B. | 0<x<4 | C. | 0<x<3 | D. | 3<x<4 |
15.在甲、乙两个盒子中分别装有标号为1,2,3,4,5的五个球,现从甲乙两个盒子中各取出1个球,球的标号分别记做a,b,每个球被取出的可能性相等,则|a-b|≤1的概率为( )
| A. | $\frac{12}{25}$ | B. | $\frac{13}{25}$ | C. | $\frac{14}{25}$ | D. | $\frac{3}{5}$ |
19.对甲、乙两名自行车赛手在相同条件下进行了6次测试,测得他们的最大速度(单位:m/s)的数据如下:
(1)画出茎叶图;
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?
| 甲 | 27 | 37 | 29 | 36 | 33 | 30 |
| 乙 | 32 | 28 | 37 | 33 | 27 | 35 |
(2)分别求出甲、乙两名自行车赛手最大速度(m/s)数据的平均数、极差、方差,并判断选谁参加比赛比较合适?