题目内容

已知θ∈[0,2π),|cosθ|<|sinθ|,且sinθ<tanθ,则θ的取值范围是(  )
A.(0,π)∪(
2
3
π,2π)
B.(0,
π
2
)∪(π,
3
2
π)
C.(
π
4
π
2
)∪(
5
4
π,
3
2
π)
D.(
π
2
3
4
π)∪(
5
4
π,
3
2
π)
∵sinθ<tanθ,即tanθ-sinθ>0,
∴tanθ(1-cosθ)>0,
由1-cosθ>0,得到tanθ>0,
当θ属于第一象限时,sinθ>0,cosθ>0,
∴|cosθ|<|sinθ|化为cosθ<sinθ,即tanθ>1,
则θ∈(
π
4
π
2
);
当θ属于第三象限时,sinθ<0,cosθ<0,
∴|cosθ|<|sinθ|化为-cosθ<-sinθ,即tanθ>1,
则θ∈(
4
2
),
综上,θ的取值范围是(
π
4
π
2
)∪(
5
4
π,
3
2
π)

故选C
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网