题目内容

15.已知m为非零常数,对x∈R,有f(x+m)=$\frac{1+f(x)}{1-f(x)}$恒成立,则函数f(x)的最小正周期是4m.

分析 根据题意分别令x取“x+m”、“x+2m”代入式子化简,由周期的定义可求出函数的最小正周期.

解答 解:因为对x∈R,有f(x+m)=$\frac{1+f(x)}{1-f(x)}$恒成立,
所以f(x+2m)=$\frac{1+f(x+m)}{1-f(x+m)}$=$\frac{1+\frac{1+f(x)}{1-f(x)}}{1-\frac{1+f(x)}{1-f(x)}}$=-$\frac{1}{f(x)}$,
则f(x+4m)=-$\frac{1}{f(x+2m)}$=-$\frac{1}{-\frac{1}{f(x)}}$=f(x),
则f(x)的周期是4m,
故答案为:4m.

点评 本题考查函数周期的定义,以及赋值法的应用,考查化简、变形能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网