题目内容

9.在△ABC中,若角A,B,C的对边分别为a,b,c,且$\sqrt{2}$a=2bsinA,则角B=$\frac{π}{4}$或$\frac{3π}{4}$.

分析 由$\sqrt{2}$a=2bsinA,利用正弦定理可得:$\sqrt{2}$sinA=2sinBsinA,sinA≠0,解得sinB=$\frac{\sqrt{2}}{2}$,B∈(0,π).即可得出.

解答 解:∵$\sqrt{2}$a=2bsinA,由正弦定理可得:$\sqrt{2}$sinA=2sinBsinA,sinA≠0,
解得sinB=$\frac{\sqrt{2}}{2}$,B∈(0,π).
∴B=$\frac{π}{4}$或$\frac{3π}{4}$.
故答案为:$\frac{π}{4}$或$\frac{3π}{4}$.

点评 本题考查正弦定理、三角函数求值,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网