题目内容
设
=(1,cos2θ),
=(2,1),
=(4sinθ,1),
=(
sinθ,1)其中θ∈(0,
).
(1)求
•
-
•
的取值范围;
(2)若f(x)=
,f(
•
)+f(
•
)=
+
,求cosθ-sinθ的值.
| a |
| b |
| c |
| d |
| 1 |
| 2 |
| π |
| 4 |
(1)求
| a |
| b |
| c |
| d |
(2)若f(x)=
| x-1 |
| a |
| b |
| c |
| d |
| ||
| 2 |
| ||
| 2 |
| a |
| b |
| c |
| d |
(1)
| a |
| b |
| c |
| d |
∵θ∈(0,
| π |
| 4 |
∴2cos2θ∈(0,2)
即
| a |
| b |
| c |
| d |
(2)∵f(
| a |
| b |
|
| 1+cos2θ |
| 2 |
| 2 |
f(
| c |
| d |
|
| 2 |
| 2 |
∴f(
| a |
| b |
| c |
| d |
| 2 |
| ||
| 2 |
| ||
| 2 |
∴cosθ+sinθ=
| ||
| 2 |
| 1 |
| 2 |
∴(cosθ+sinθ)2=1+
| ||
| 2 |
∴sin2θ=
| ||
| 2 |
因为θ∈(0,
| π |
| 4 |
| π |
| 3 |
| π |
| 6 |
故cosθ-sinθ=
| ||
| 2 |
| 1 |
| 2 |
(注亦可:(cosθ-sinθ)2=1-2sinθcosθ=1-
| ||
| 2 |
4-2
| ||
| 4 |
cosθ-sinθ=±
| ||
| 2 |
| π |
| 4 |
sinθ<cosθ∴cosθ-sinθ=
| ||
| 2 |
| 1 |
| 2 |
练习册系列答案
相关题目