题目内容
已知函数.
(Ⅰ)当时,证明:为奇函数;
(Ⅱ)若关于的方程有两个不等实数根,求实数的取值范围.
函数的最小正周期是_______,振幅是_______.
已知椭圆()的离心率为,且短轴长为2.
(1)求椭圆的方程;
(2)若与两坐标轴都不垂直的直线与椭圆交于两点,为坐标原点,且,,求直线的方程.
过双曲线的一个焦点作双曲线的一条渐近线的垂线,若垂足恰好在线段的垂直平分线上,则双曲线的离心率是( )
A. B. C.2 D.
长方体中,,则异面直线所成角的余弦值为
( )
A. B. C. D.
函数的图像不可能是
下列四组函数,表示同一函数的是( )
A.
B.
C.
D.
已知函数,且.
(1)求a的值;
(2)判断的奇偶性,并加以证明;
(3)判断函数在[2,+)上的单调性,并加以证明.
在空间中,下列命题错误的是( )
A.一条直线与两个平行平面中的一个相交,则必与另一个相交
B.一个平面与两个平行平面相交,交线平行
C.平行于同一平面的两个平面平行
D.平行于同一直线的两个平面平行