题目内容
已知cos(α+β)=-
,sinβ=
,α,β均为锐角
(1)求cos(α+2β)值
(2)求sinα的值.
| 5 |
| 13 |
| 3 |
| 5 |
(1)求cos(α+2β)值
(2)求sinα的值.
(1)由题意知:sin(α+β)=
,cosβ=
,
∴cos(α+2β)=cos[(α+β)+β]=cos(α+β)cosβ-sin(α+β)sinβ=
×
-
×
=-
.
(2)sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=
×
-
×
=
.
| 12 |
| 13 |
| 4 |
| 5 |
∴cos(α+2β)=cos[(α+β)+β]=cos(α+β)cosβ-sin(α+β)sinβ=
| -5 |
| 13 |
| 4 |
| 5 |
| 12 |
| 13 |
| 3 |
| 5 |
| 56 |
| 65 |
(2)sinα=sin[(α+β)-β]=sin(α+β)cosβ-cos(α+β)sinβ=
| 12 |
| 13 |
| 4 |
| 5 |
| -5 |
| 13 |
| 3 |
| 5 |
| 63 |
| 65 |
练习册系列答案
相关题目