题目内容

如图所示,AD是△ABC外角∠EAC的平分线,AD与△ABC的外接圆交于点D,N为BC延长线上一点,ND交△ABC的外接圆于点M.求证:
(1)DB=DC;
(2)DC2=DM•DN.
考点:与圆有关的比例线段
专题:立体几何
分析:(1)由于四点A、B、C、D共圆,可得∠EAD=∠BCD,∠DAC=∠DBC.由于AD是△ABC外角∠EAC的平分线,可得∠EAD=∠DAC,即可证明;
(2)连接BM,CM.可得∠DBM=∠DCM,∠CBM=∠CDM,再利用(1)和圆的性质可得∠N=∠DCM,即可证明△CDM∽△NDC.进而得出答案.
解答: 证明:(1)∵四点A、B、C、D共圆,∴∠EAD=∠BCD,∠DAC=∠DBC,
∵AD是△ABC外角∠EAC的平分线,
∴∠EAD=∠DAC,
∴∠DBC=∠BCD.
∴DB=DC.
(2)连接BM,CM.
则∠DBM=∠DCM,∠CBM=∠CDM,
∴∠N=∠BCD-∠CDM=∠DBC-∠CBM=∠DBM=∠DCM,
又∵∠CDM公用,
∴△CDM∽△NDC.
CD
ND
=
DM
CD

∴DC2=DM•DN.
点评:本题考查了四点共圆的性质、角平分线的性质、相似三角形的判定与性质,考查了推理能力和辅助线的作法,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网