搜索
题目内容
k为何值时,直线y=kx+2和椭圆
有两个交点 ( )
A.—
<k<
B.k>
或k< —
C.—
k
D.k
或k
—
试题答案
相关练习册答案
B
试题分析:由
可得 :(2+3k
2
)x
2
+12kx+6=0,由△=144k
2
-24(2+3k
2
)>0得k>
或k< —
,此时直线和椭圆有两个公共点。
点评:判断直线和椭圆交点个数的主要方法,联立方程组,消元,判断△>0、△=0还是△<0。
练习册系列答案
阅读授之以渔系列答案
浙江省普通高中作业本系列答案
实验班中考总复习系列答案
亮点激活期末冲刺大试卷系列答案
全优学习达标训练系列答案
毕业会考阶梯模拟卷系列答案
小学升学多伦夯基总复习系列答案
同步练习目标与测试系列答案
复习计划风向标暑系列答案
开心快乐假期作业暑假作业西安出版社系列答案
相关题目
(12分)已知椭圆C:
以双曲线
的焦点为顶点,其离心率与双曲线的离心率互为倒数.
(1)求椭圆C的方程;
(2)若椭圆C的左、右顶点分别为点A,B,点M是椭圆C上异于A,B的任意一点.
①求证:直线MA,MB的斜率之积为定值;
②若直线MA,MB与直线x=4分别交于点P,Q,求线段PQ长度的最小值.
设点
在曲线
上,点
在曲线
上,则
的最小值等于
.
若曲线
的焦点F恰好是曲线
的右焦点,且
交点的连线过点F,则曲线
的离心率为
A.
B.
C.
D.
已知平面
经过点
,且
是它的一个法向量. 类比曲线方程的定义以及求曲线方程的基本步骤,可求得平面
的方程是
.
已知双曲线C的中心在原点,抛物线
的焦点是双曲线C的一个焦点,且双曲线经过点
,又知直线
与双曲线C相交于A、B两点.
(1)求双曲线C的方程;
(2)若
,求实数k值.
(12分)已知双曲线与椭圆
有相同焦点,且经过点
,
求该双曲线方程,并求出其离心率、渐近线方程,准线方程。
若直线
与曲线
有两个不同的交点,则实数
的取值范围是( )
A.
B.
C.
D.
如图,已知抛物线
,焦点为
,顶点为
,点
在抛物线上移动,
是
的中点,
是
的中点,求点
的轨迹方程.
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案