题目内容

3.已知角α的终边经过P($\frac{3}{5}$,$\frac{4}{5}$).
(1)求sinα;
(2)根据上述条件,你能否确定sin($\frac{π}{4}$+α)的值?若能,求出sin($\frac{π}{4}$+α)的值,若不能,请说明理由.

分析 (1)由条件利用任意角的三角函数的定义,求得sinα的值.
(2)由于可以求得sinα和cosα的值,再利用两角和的正弦公式求得 sin($\frac{π}{4}$+α)的值.

解答 解:(1)∵角α的终边经过P($\frac{3}{5}$,$\frac{4}{5}$),∴x=$\frac{3}{5}$,y=$\frac{4}{5}$,r=|OP|=1,
∴sinα=$\frac{y}{r}$=$\frac{4}{5}$.
(2)由题意可得,cosα=$\frac{x}{r}$=$\frac{3}{5}$,∴sin($\frac{π}{4}$+α)=sin$\frac{π}{4}$cosα+cos$\frac{π}{4}$sinα=$\frac{\sqrt{2}}{2}$(sinα+cosα)=$\frac{\sqrt{2}}{2}$×$\frac{7}{5}$=$\frac{7\sqrt{2}}{10}$,
∴能确定sin($\frac{π}{4}$+α)的值.

点评 本题主要考查任意角的三角函数的定义,两角和的正弦公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网