题目内容
分析:根据平行六面体法则可得:
=
+
+
,先求出两两向量的夹角,再利用模的计算公式即可得出.
| BD1 |
| BA |
| BB1 |
| BC |
解答:解:∵共顶点A的三条棱两两所成的角为60°,∴∠ABC=120°=∠ABB1,∠CBB1=60°,
又各条棱长均为1,∴
•
=
•
=1×1×cos120°=-
,
•
=1×1×cos60°=
.
好∵
=
+
+
,好
∴
2=(
+
+
)2=
2+
2+
2+2
•
+2
•
+2
•
=1+1+1+2×(-
)×2+2×
=2,
∴|
|=
.
故选B.
又各条棱长均为1,∴
| BA |
| BB1 |
| BA |
| BC |
| 1 |
| 2 |
| BC |
| BB1 |
| 1 |
| 2 |
好∵
| BD1 |
| BA |
| BB1 |
| BC |
∴
| BD1 |
| BA |
| BB1 |
| BC |
| BA |
| BB1 |
| BC |
| BA |
| BB1 |
| BA |
| BC |
| BC |
| BB1 |
=1+1+1+2×(-
| 1 |
| 2 |
| 1 |
| 2 |
∴|
| BD1 |
| 2 |
故选B.
点评:熟练掌握平行六面体法则及模的计算公式是解题的关键.
练习册系列答案
相关题目