题目内容
若空间向量
、
满足(
+
)⊥(2
-
),(
-2
)⊥(2
+
),则cos<
,
>= .
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
考点:平面向量数量积的运算
专题:计算题
分析:由已知,得出(
+
)•(2
-
)=0,2
2+
•
-
2=0①,(
-2
)•(2
+
)=0,2
2-3
•
-2
2=0②
①-②得4
•
+
2=0,
•
=-
2,代入①并整理得
2=
2,|
|=
|
|,代入夹角余弦公式计算即可.
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
①-②得4
| a |
| b |
| b |
| a |
| b |
| 1 |
| 4 |
| b |
| a |
| 5 |
| 8 |
| b |
| a |
|
| b |
解答:
解:(
+
)⊥(2
-
),(
+
)•(2
-
)=0,2
2+
•
-
2=0①
(
-2
)⊥(2
+
),(
-2
)•(2
+
)=0,2
2-3
•
-2
2=0②
①-②得4
•
+
2=0,
•
=-
2,代入①并整理得
2=
2,|
|=
|
|,
cos<
,
>=
=
=-
故答案为:-
.
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
(
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| b |
| a |
| a |
| b |
| b |
①-②得4
| a |
| b |
| b |
| a |
| b |
| 1 |
| 4 |
| b |
| a |
| 5 |
| 8 |
| b |
| a |
|
| b |
cos<
| a |
| b |
| ||||
|
|
-
| ||||||
|
| ||
| 10 |
故答案为:-
| ||
| 10 |
点评:本题考查向量夹角的计算,考查方程思想,要利用向量的数量积和模的意义进行合理的转换.
练习册系列答案
相关题目