题目内容
12.设数列{an}的前n项和为Sn,且an=2-2Sn,(n∈N*),则数列{an}的通项公式an等于( )| A. | 3n | B. | $\frac{2}{{3}^{n}}$ | C. | $\frac{1}{{3}^{n}}$ | D. | 3n-2 |
分析 an=2-2Sn,(n∈N*),当n=1时,a1=2-2a1,解得a1.当n≥2时,an-1=2-2Sn-1,可得an-an-1=-2an,化为${a}_{n}=\frac{1}{3}{a}_{n-1}$,利用等比数列的通项公式即可得出.
解答 解:∵an=2-2Sn,(n∈N*),
∴当n=1时,a1=2-2a1,解得a1=$\frac{2}{3}$.
当n≥2时,an-1=2-2Sn-1,可得an-an-1=-2an,化为${a}_{n}=\frac{1}{3}{a}_{n-1}$,
∴数列{an}是等比数列,首项为$\frac{2}{3}$,公比为$\frac{1}{3}$.
∴${a}_{n}=\frac{2}{3}×(\frac{1}{3})^{n-1}$=$\frac{2}{{3}^{n}}$.
故选:B.
点评 本题考查了递推关系、等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
2.命题“?x>0,x2>0”的否定是( )
| A. | ?x>0,x2<0 | B. | ?x>0,x2≤0 | C. | $?{x_0}>0,{x_0}^2<0$ | D. | $?{x_0}>0,{x_0}^2≤0$ |
20.函数y=$\frac{2x-1}{\sqrt{3x+5}}$的定义域为( )
| A. | {x|x≥-$\frac{5}{3}$} | B. | {x|x≥-$\frac{5}{3}$且x≠$\frac{1}{2}$} | C. | {x|x>-$\frac{5}{3}$} | D. | {x|x≤-$\frac{5}{3}$} |
4.△ABC中,∠C=90°,AC=4,BC=3,D是AB的中点,E,F分别是边BC、AC上的动点,且EF=1,则$\overrightarrow{DE}$$•\overrightarrow{DF}$的最小值等于( )
| A. | $\frac{\sqrt{5}}{4}$ | B. | $\frac{15}{4}$ | C. | $\frac{17}{4}$ | D. | $\frac{\sqrt{17}}{4}$ |