题目内容
已知数列{an},其前n项和Sn+1=2λSn+1 (λ是大于0的常数),且a1=1,a3=4.
(1)求λ的值;
(2)求数列{an}的通项公式an;
(3)若bn=2+lo
,n∈N*,n∈R,设Tn为数列
的前n项和,求证:Tn<
.
(1)求λ的值;
(2)求数列{an}的通项公式an;
(3)若bn=2+lo
| g |
|
| 1 |
| n(bn+1) |
| 3 |
| 4 |
分析:(1)由Sn+1=2λSn+1,知a3=S3-S2=4λ2,再由a3=4,λ>0,能求出λ.
(2)由Sn+1=2λSn+1,得Sn+1+1=2(Sn+1),故数列{Sn+1}是以S1+1=2为首项,以2为公比的等比数列,所以Sn=2n-1,由此能求出an=2n-1(n∈N*).
(3)由bn=2+2log
|
|=2+2log2an=n+1.知
=
=
(
-
),由此利用裂项求法和能证明数列
的前n项和Tn<
.
(2)由Sn+1=2λSn+1,得Sn+1+1=2(Sn+1),故数列{Sn+1}是以S1+1=2为首项,以2为公比的等比数列,所以Sn=2n-1,由此能求出an=2n-1(n∈N*).
(3)由bn=2+2log
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| n(bn+1) |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
| 1 |
| n(bn+1) |
| 3 |
| 4 |
解答:解:(1)由Sn+1=2λSn+1,
得S2=2λS1+1=2λa1+1=2λ+1,
S3=2λS2+1=4λ2+2λ+1,
∴a3=S3-S2=4λ2,
又∵a3=4,λ>0,∴λ=1.
(2)由Sn+1=2λSn+1,得Sn+1+1=2(Sn+1),
∴数列{Sn+1}是以S1+1=2为首项,以2为公比的等比数列,
∴Sn+1=2•2n-1,∴Sn=2n-1,
∴an=Sn-Sn-1=2n-1.n≥2
∵当n=1时,a1=1满足an=2n-1,∴an=2n-1(n∈N*).
(3)∵bn=2+2log
|
|
=2+2log2an
=log2(4•2n-1)
=log22n+1
=n+1.
∴
=
=
(
-
),
∴数列
的前n项和:
Tn=
+
+…+
=
[(1-
)+(
-
)+(
-
)+…+(
-
)+(
-
)]
=
(1+
-
-
)
<
(1+
)=
,
∵T1=
<
,
∴Tn<
.
得S2=2λS1+1=2λa1+1=2λ+1,
S3=2λS2+1=4λ2+2λ+1,
∴a3=S3-S2=4λ2,
又∵a3=4,λ>0,∴λ=1.
(2)由Sn+1=2λSn+1,得Sn+1+1=2(Sn+1),
∴数列{Sn+1}是以S1+1=2为首项,以2为公比的等比数列,
∴Sn+1=2•2n-1,∴Sn=2n-1,
∴an=Sn-Sn-1=2n-1.n≥2
∵当n=1时,a1=1满足an=2n-1,∴an=2n-1(n∈N*).
(3)∵bn=2+2log
| 1 |
| 2 |
| 1 |
| an |
=2+2log2an
=log2(4•2n-1)
=log22n+1
=n+1.
∴
| 1 |
| n(bn+1) |
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
∴数列
| 1 |
| n(bn+1) |
Tn=
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| n-1 |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
<
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
∵T1=
| 1 |
| 3 |
| 3 |
| 4 |
∴Tn<
| 3 |
| 4 |
点评:本题考查数列的通项公式的证明和不等式证明,解题时要认真审题,注意迭代法、构造法和裂项求和法的合理运用.
练习册系列答案
相关题目