题目内容
1.若纯虚数z满足(1-i)z=1+ai,则实数a等于( )| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由已知条件,利用复数电视形式的乘除运算化简求得z,由z的实部为0,且虚部不为0,即可求得a的值.
解答 解:由(1-i)z=1+ai,
∴z=$\frac{1+ai}{1-i}$=$\frac{(1+ai)(1+i)}{(1-i)(1+i)}$=$\frac{(1-a)+(a+1)i}{2}$,
z为纯虚数,
∴$\left\{\begin{array}{l}{1-a=0}\\{1+a≠0}\end{array}\right.$,解得a=1,
故答案选:A.
点评 本题考查复数代数形式的乘除运算,考查复数的概念,属于基础题.
练习册系列答案
相关题目
12.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为$\frac{3}{10}$.
16.随机询问某校40名不同性别的学生在购买食物时是否读营养说明,得到如下2×2列联表:
(1)补全列联表
(2)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?
附:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
| 读营养说明 | 不读营养说明 | 合计 | |
| 男 | 16 | ||
| 女 | 20 | ||
| 合计 | 16 |
(2)根据以上列联表进行独立性检验,能否在犯错误的概率不超过0.01的前提下认为“性别与是否读营养说明之间有关系”?
附:K2=$\frac{n(ad-bc)^2}{(a+b)(c+d)(a+c)(b+d)}$.
临界值表:
| P(K2≥k) | 0.10 | 0.05 | 0.010 |
| k | 2.706 | 3.841 | 6.635 |