ÌâÄ¿ÄÚÈÝ
| 2 |
| 2 |
£¨1£©ÈôÈýÌõµÀ·½¨ÉèµÄ·ÑÓÃÏàͬ£¬Çó¸ÃÎÄ»¯ÖÐÐÄÀëN´åµÄ¾àÀ룻
£¨2£©Èô½¨Éè×Ü·ÑÓÃ×îÉÙ£¬Çó¸ÃÎÄ»¯ÖÐÐÄÀëN´åµÄ¾àÀ룮
¿¼µã£ºº¯ÊýÄ£Ð͵ÄÑ¡ÔñÓëÓ¦ÓÃ
רÌ⣺ӦÓÃÌâ,º¯Êý˼Ïë,º¯ÊýµÄÐÔÖʼ°Ó¦ÓÃ
·ÖÎö£º£¨1£©Éè¡ÏAOB=¦È£¬ÈýÌõµÀ·½¨ÉèµÄ·ÑÓÃÏàͬ£¬Ôò
¡Á
a=(4
-4tan¦È)a£¬ÀûÓÃÈý½Ç±ä»»Çó½â£®
£¨2£©×Ü·ÑÓæØ=2¡Á
+a(4
-4tan¦È)£¬¦È¡Ê[0£¬
]£¬¼´¦Ø=
a+4
a£¬Çóµ¼Åжϼ«Öµµã£¬Áî¦Ø¡ä=
a=0£¬µÃsin¦È=
£¬ÔÙת»»ÎªÈý½Ç±ä»»ÇóÖµ½â¾ö£®
| 4 |
| cos¦È |
| 2 |
| 3 |
£¨2£©×Ü·ÑÓæØ=2¡Á
4
| ||
| cos¦È |
| 3 |
| ¦Ð |
| 3 |
8
| ||
| cos¦È |
| 3 |
8
| ||
| cos2¦È |
| ||
| 4 |
½â´ð£º
½â£º£¨1£©²»·ÁÉè¡ÏAOB=¦È£¬ÒÀÌâÒâµÃ¦È¡Ê[0£¬
]£¬
ÇÒMC=4
£¬ÓÉAO=BO=4
=
£¬NO=4
-4tan¦È£¬
ÈôÈýÌõµÀ·½¨ÉèµÄ·ÑÓÃÏàͬ£¬Ôò
¡Á
a=(4
-4tan¦È)a
ËùÒÔsin(
-¦È)=
£¬ËùÒÔ¦È=
£®
Óɶþ±¶½ÇµÄÕýÇй«Ê½µÃ£¬tan¦È=tan
=2-
¼´NO=8
-8£¬
´ð£º¸ÃÎÄ»¯ÖÐÐÄÀëN´åµÄ¾àÀëΪ(8
-8)km£®
£¨2£©×Ü·ÑÓæØ=2¡Á
+a(4
-4tan¦È)£¬¦È¡Ê[0£¬
]
¼´¦Ø=
a+4
a£¬
Áî¦Ø¡ä=
a=0£¬µÃsin¦È=
µ±0¡Üsin¦È¡Ü
2£¬¦Ø¡ä£¼0£¬µ±
£¼sin¦È¡Ü
ʱ£¬¦Ø¡ä£¾0£¬
ËùÒÔµ±sin¦È=
ʱ£¬¦ØÓÐ×îСֵ£¬
Õâʱ£¬tan¦È=
£¬NO=4
-
´ð£º¸ÃÎÄ»¯ÖÐÐÄÀëN´åµÄ¾àÀëΪ(4
-
)km£®
| ¦Ð |
| 3 |
ÇÒMC=4
| 3 |
| 3 |
| 4 |
| cos¦È |
| 3 |
ÈôÈýÌõµÀ·½¨ÉèµÄ·ÑÓÃÏàͬ£¬Ôò
| 4 |
| cos¦È |
| 2 |
| 3 |
ËùÒÔsin(
| ¦Ð |
| 3 |
| ||
| 2 |
| ¦Ð |
| 12 |
Óɶþ±¶½ÇµÄÕýÇй«Ê½µÃ£¬tan¦È=tan
| ¦Ð |
| 12 |
| 3 |
¼´NO=8
| 3 |
´ð£º¸ÃÎÄ»¯ÖÐÐÄÀëN´åµÄ¾àÀëΪ(8
| 3 |
£¨2£©×Ü·ÑÓæØ=2¡Á
4
| ||
| cos¦È |
| 3 |
| ¦Ð |
| 3 |
¼´¦Ø=
8
| ||
| cos¦È |
| 3 |
Áî¦Ø¡ä=
8
| ||
| cos2¦È |
| ||
| 4 |
µ±0¡Üsin¦È¡Ü
| ||
| 4 |
| ||
| 4 |
| ||
| 2 |
ËùÒÔµ±sin¦È=
| ||
| 4 |
Õâʱ£¬tan¦È=
| ||
| 7 |
| 3 |
4
| ||
| 7 |
´ð£º¸ÃÎÄ»¯ÖÐÐÄÀëN´åµÄ¾àÀëΪ(4
| 3 |
4
| ||
| 7 |
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˺¯ÊýµÄÐÔÖÊÔÚʵ¼ÊÎÊÌâÖеÄÓ¦Óã¬×ª»»ÎªÈý½Çº¯Êý×îÖµÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
ÒÔϺ¯ÊýÔÚRÉÏÊǼõº¯ÊýµÄÊÇ£¨¡¡¡¡£©
| A¡¢y=-x2 | ||
B¡¢y=log
| ||
C¡¢y=
| ||
D¡¢y=(
|
Èôf£¨2x+1£©=x2-1£¬Ôòf£¨0£©=£¨¡¡¡¡£©
A¡¢-
| ||
| B¡¢0 | ||
C¡¢
| ||
| D¡¢-1 |
²»µÈʽ£¨x-1£©£¨x-2£©¡Ý0µÄ½â¼¯µÈÓÚ£¨¡¡¡¡£©
| A¡¢{x|1¡Üx¡Ü2} |
| B¡¢{x|x¡Ý2»òx¡Ü1} |
| C¡¢{x|1£¼x£¼2} |
| D¡¢{x|x£¾1»òx£¼2} |