题目内容

若直线y=x+t与椭圆
x24
+y2=1
相交于A、B两点,当t变化时,求|AB|的最大值.
分析:直线方程代入椭圆方程,利用韦达定理及弦长公式,可求|AB|,从而可求|AB|的最大值.
解答:解:以y=x+t代入
x2
4
+y2=1
,并整理得5x2+8tx+4t2-4=0①
因为直线与椭圆相交,则△=64t2-20(4t2-4)>0,…(3分)
所以t2<5,即-
5
<t<
5
,…(3分)
设A(x1,y1),B(x2,y2),则A(x1,x1+t),B(x2,x2+t),且x1,x2是方程①的两根.由韦达定理可得:
x1+x2=-
8t
5
x1x2=
4(t2-1)
5
,…(6分)
所以,弦长|AB|2=(x1-x2)2+(y1-y2)2=2(x1-x2)2=2[(x1+x2)2-4x1•x2]=2[(-
8t
5
)2
-4•
4(t2-1)
5
]…(9分)
所以|AB|=
4
5
2
5-t2

所以当t=0时,|AB|取最大值为
4
5
10
.…(12分)
点评:本题考查直线与椭圆的位置关系,考查韦达定理的运用,正确计算弦长是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网