题目内容

如图,设四棱锥S-ACDE的底面为菱形,且∠ABC=60°,AB=SC=2,SA=SB=
2

(Ⅰ)求证:平面SAB⊥平面ABCD;
(Ⅱ)设P为SD的中点,求三棱锥P-SAC的体积.
考点:棱柱、棱锥、棱台的体积,平面与平面垂直的判定
专题:综合题,空间位置关系与距离
分析:(Ⅰ)连接AC,取AB的中点E,连接SE、EC,证明SE⊥面ABCD,即可证明平面SAB⊥平面ABCD;
(Ⅱ)利用转换底面的方法,即可求三棱锥P-SAC的体积.
解答: (Ⅰ)证明:连接AC,取AB的中点E,连接SE、EC,
SA=SB=
2
,∴SE⊥AB,AB=2,∴SE=1,
又四棱锥S-ACDE的底面为菱形,且∠ABC=60°,
∴△ABC是等边三角形,AB=2,
CE=
3

又SC=2,∴SC2=CE2+SE2
∴SE⊥EC,∴SE⊥面ABCD,
∵SE?平面SAB,
∴平面SAB⊥平面ABCD;
(Ⅱ)解:VP-SAC=VS-PAC=VS-DAC-VP-DAC=
1
2
VS-DAC
=
1
2
1
3
3
4
22•1=
3
6
点评:本题在四棱锥中证明面面垂直,并求三棱锥的体积.着重考查了平面与平面垂直的判定定理和锥体体积公式等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网